
Word Embeddings
2/05/25

Background: Word
Representations

3

Motivation

▪ Core question in understanding cultural and language evolution: how do words
change meaning over time?

Hamilton, William L., Jure Leskovec, and Dan Jurafsky. "Diachronic Word Embeddings Reveal Statistical Laws of

Semantic Change." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). 2016.

How can we represent
meaning of a word?

4

Motivation

▪ Can we use language analysis to identify and measure stereotypes?

▪ Example from last week:

o Using PMI scores, Wikipedia articles about women tend to talk personal life
more

o Might we expect words like “family”, and “marriage” to be women-associated?

How can we measure “associations” between words?

Wagner, Claudia, et al. "It's a man's Wikipedia? Assessing gender inequality in an online encyclopedia." Proceedings of
the international AAAI conference on web and social media. Vol. 9. No. 1. 2015.

5

How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

6

How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

A sense or “concept” is the meaning component of a word.

7

How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

▪ Relationships between words or senses

▪ Taxonomic relationships

▪ Word similarity, word relatedness

8

Relations between words

▪ Synonyms have the same meanings in some or all contexts

o Couch / sofa, car / automobile

o [Note that there are no examples of perfect synonymy]

▪ Antonyms senses that are opposite with respect to one feature of meaning

o Dark / light, short / long, slow / fast

o [Otherwise they are very similar]

o [Antonyms can define a binary opposition or be at opposite ends of a scale]

9

Relations between words

▪ Hypernym / Hyponym (superordinate / subordinate)

o One sense is a hyponym of another if the first sense is more specific, denoting a
subclass of the other

Hyponym

10

How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

▪ Relationships between words or senses

▪ Taxonomic relationships

▪ Word similarity, word relatedness

11

Annotated Resources for Lexical
Semantics

▪ https://wordnet.princeton.edu/

▪ (python packages)

https://wordnet.princeton.edu/

12

How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

▪ Relationships between words or senses

▪ Taxonomic relationships

▪ Word similarity, word relatedness

▪ Semantic frames and roles

▪ Connotation and sentiment

13

How to represent a word

▪ Until the ~2010s, in NLP words == atomic symbols

▪ One-hot representations in vector space:

14

How to represent a word

▪ Until the ~2010s, in NLP words == atomic symbols

▪ One-hot representations in vector space:

Good things:

▪ Useful for coding identity

▪ Can do matrix operations:

o Feed into machine learning models

o Matrix decompositions

15

How to represent a word

▪ Until the ~2010s, in NLP words == atomic symbols

▪ One-hot representations in vector space:

Bad things:

▪ Sparse representations that scale with
vocabulary size

▪ “tacos” is orthogonal to “burritos”

▪ How can we encode word similarity (not
just identity)?

16

Encoding word similarity

▪ How can we encode word similarity (not just identity) in word
representations?

▪ Consider encountering a new word: tezgüino

o A bottle of tezgüino is on the table

o Everybody likes tezgüino

o Don’t have tezgüino before you drive

o We make tezgüino out of corn

17

Word-word co-occurrence matrix

https://www.baeldung.com/cs/co-occurrence-matrices

Apples are green and red.
Red apples are sweet.
Green oranges are sour

18

Distributional hypothesis

▪ These representations encode distributional properties of each word.

▪ The distributional hypothesis: words with similar meaning are used in similar
contexts.

“The meaning of a word is its use in the language.” [Wittgenstein 1943]

“If A and B have almost identical environments we say that they are synonyms.” [Harris
1954]

“You shall know a word by the company it keeps.” [Firth 1957]

19

How to encode context

Really really big

…

…

…

… sparse

20

How to encode context

▪ TF-IDF

▪ Word2Vec

▪ Not covering other methods: e.g. Brown clusters, Matrix factorization

TF-IDF

22

Encoding Context with TF-IDF

▪ Consider a matrix of word counts across documents: term-document matrix

Bag-of-words document
representation

word vector

Words like the, it,
they are not very
discriminative, we
can do better
than raw counts

23

Encoding Context with TF-IDF

▪ TF-IDF incorporates two terms that capture these conflicting constraints:

o Term frequency (tf): frequency of the word t in the document

𝑡𝑓𝑡,𝑑 = log(𝑐𝑜𝑢𝑛𝑡 𝑡, 𝑑 + 1)

24

Encoding Context with TF-IDF

▪ TF-IDF incorporates two terms that capture these conflicting constraints:

o Term frequency (tf): frequency of the word t in a cluster (or “class”)

o Document frequency (df): number of documents that a term occurs in

o Inverse document frequency (idf):

o (N) is the number of documents in the corpus

𝑡𝑓𝑡,𝑐 = log(𝑐𝑜𝑢𝑛𝑡 𝑡, 𝑑 + 1)

𝑖𝑑𝑓𝑡 = log(𝑁
𝑑𝑓𝑡

)
Higher for terms

that occur in
fewer documents

25

Encoding Context with TF-IDF

▪ TF-IDF incorporates two terms that capture these conflicting constraints:

o Term frequency (tf): frequency of the word t in the document

o Document frequency (df): number of documents that a term occurs in

o Inverse document frequency (idf):

o (N) is the number of documents in the corpus

▪ TF-IDF combines these two terms:

𝑡𝑓𝑡,𝑑 = log(𝑐𝑜𝑢𝑛𝑡 𝑡, 𝑑 + 1)

𝑖𝑑𝑓𝑡 = log(𝑁
𝑑𝑓𝑡

)
Higher for terms

that occur in
fewer documents

𝑡𝑓−𝑖𝑑𝑓𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 ∗ 𝑖𝑑𝑓𝑡

26

Encoding Context with TF-IDF

▪ Consider a matrix of word counts across documents: term-document matrix

Bag-of-words document
representation

word vector

We could use TF-
IDF here instead
of counts

27

Notes about TF-IDF

▪ Very useful way of creating document embeddings

o Designed for and still excels at document retrieval

o Often useful as features for classification models

▪ We could use variants of log-odds with a Dirichlet prior ratios ortopic models to
create document or word embeddings

▪ Word-embedding use cases of TF-IDF are not as common

28

Dimensionality Reduction

▪ TF-IDF representations are still sparse

o Wikipedia: ~29 million English documents. Vocab: ~1 million words.

▪ Sparse vs. dense vectors:

o Short vectors often easier to use as features in a classifier (fewer parameters).

o Dense vectors may generalize better than storing explicit counts.

o May better capture synonymy

o In practice, they just work better [Baroni et al. 2014]

▪ How do we build dense vectors?

Word2Vec

30

Word2Vec

▪ Instead of counting how often each word w occurs near “corn”, train a classifier on a
binary prediction task: Is w likely to show up near “corn”?

▪ Don’t actually care about performing this task, but we’ll take the learned classifier
weights as the word embeddings

▪ Training is self-supervised: no annotated data required, just raw text!

31

Word2Vec: Two Algorithms

▪ Context bag-of-words (CBOW): predict
current word using context

o 𝑃 𝑤𝑡 𝑤𝑡+1, … , 𝑤𝑡+𝑘 , 𝑤𝑡−1, … , 𝑤𝑡−𝑘)

▪ Skip-gram: predict each context word
using current word

o 𝑃(𝑤𝑡+1, … , 𝑤𝑡+𝑘 , 𝑤𝑡−1, … , 𝑤𝑡−𝑘| 𝑤𝑡)

32

Skip-gram: Probabilities

… that Europe needs unified banking regulation to replace the hodgepodge …
𝑤𝑡𝑤𝑡−1𝑤𝑡−2𝑤𝑡−3 𝑤𝑡+1 𝑤𝑡+2 𝑤𝑡+5…

𝑃 𝑤𝑡+𝑗 𝑤𝑡 = 𝑃 𝑜 𝑐) =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

Dot product (similarity

metric)
Larger dot product =

larger similarity

softmax functiono = index of outside (context) word

c = index of center word (𝑤𝑡)
V = vocab size

u = vector for word as outside (context)

v = vector for word as center

We want to train a model to output 𝑃 𝑤𝑡+𝑗 𝑤𝑡 . We define:

33

Skip-gram: How do we learn u and w?

… that Europe needs unified banking regulation to replace the hodgepodge …
𝑤𝑡𝑤𝑡−1𝑤𝑡−2𝑤𝑡−3 𝑤𝑡+1 𝑤𝑡+2 𝑤𝑡+5…

m = 5

Data Likelihood: probability of any context word given center word (maximize)

𝐿 =
1

𝑇
ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚,𝑗≠0

𝑃(𝑤𝑡+𝑗|𝑤𝑡, 𝜃)

Objective Function: negative log probability (minimize)

𝐿 = −
1

𝑇

𝑡=1

𝑇

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃(𝑤𝑡+𝑗|𝑤𝑡, 𝜃)

[Note we’re assuming
conditional independent]

34

𝐿 = −
1

𝑇

𝑡=1

𝑇

−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃(𝑤𝑡+𝑗|𝑤𝑡, 𝜃)

▪ Gradient-based estimation (e.g. stochastic gradient descent)
▪ Start with uninformed guess for u and w (e.g. random)
▪ Iteratively change u and w in the way that locally best-improves the

guess
▪ Computing gradients (e.g. derivatives) of the objective function with

respect to u and w inform how to change them

Skip-gram: How do we learn u and w?

𝑃 𝑤𝑡+𝑗 𝑤𝑡 = 𝑃 𝑜 𝑐) =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling

“v” input vector matrix “u” output vector matrix

At the end of training we’ve learned 2 sets of embeddings: we can average them
or just keep one of them

exp(𝑢𝑜
𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

N = number of
dimensions in
embeddings
(parameter you
choose)

https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling

36

Quiz

Consider three categories of words that have different relationships in our
favorite dataset of Democratic and Republican congressional speech.

A. Synonyms that are nearly interchangeable like “death-tax” and “estate-
tax”, but tend to be used by different party members

B. Words that are used by different individuals and have different meanings,
but tend to appear in identical sentences like “Texas” and “New York”
(example sentence: “My constituents from Texas”)

C. Words that tend to co-occur in the same speech, but maybe not the
same sentences. For example a speech healthcare might refer to
“insurance” and “doctors”

1. Let’s we construct TF-IDF word embeddings (from a term-document matrix)
over the corpus. Which of the above categories do expect to have similar
embeddings (select all that apply)?

2. Let’s we construct CBOW Word2Vec embeddings. Which of the above categories
do expect to have similar embeddings (select all that apply)?

3. Let’s we construct Skip-gram Word2Vec embeddings. Which of the above
categories do expect to have similar embeddings (select all that apply)?

37

Skip-gram

exp(𝑢𝑜
𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

▪ Problem:

o Denominator is computationally expensive! O(VK)

o Solutions:

• Hierarchical softmax O(log V)

• Negative Sampling O(1)

38

Skip-gram: Negative sampling

exp(𝑢𝑜
𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

Encourage center word

and context word to
have similar vectors

Encourage center word

and all other words to
have different vectors

▪ Intuition: we don’t need to down-weight all other words at once, we can chose a
small number of negative samples

39

Skip-gram: Negative sampling

▪ New objective (single context word, k negative samples)

P(o | c) =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

1

1 + exp(−𝑢𝑜
𝑇𝑣𝑐)

log 𝑃 𝑜+ 𝑐 +

𝑖=1

𝑘

log(1 − 𝑃 𝑜𝑖 𝑐)

▪ (Problem changes from multiclass to binary)

40

Choosing negative samples

▪ Generally choose frequent words

▪ Could choose purely based on frequency P(w)

▪ In practice, 𝑃𝛼 𝑤 =
𝑐𝑜𝑢𝑛𝑡(𝑤)𝛼

σ𝑤 𝑐𝑜𝑢𝑛𝑡(𝑤)𝛼 with 𝛼 = 0.75 works well (gives rare words slightly

higher probability)

41

Recap

▪ We want meaningful representations of words that we can use for corpus analytics
(and other things)

▪ By defining a fake task, predicting context from a word (skip-gram) or a word from
context (CBOW), we can learn meaningful vector

o Our training objective specifically encourages words that co-occur together or
occur in similar contexts to have similar vectors

▪ Actual implementation requires additional tricks for reducing computational
complexity

42

Pre-trained Word2Vec Embeddings

▪ https://code.google.com/archive/p/word2vec/

▪ You can train embeddings on your own data

▪ Depending on your application, you can also start with embeddings trained on large
data set

https://code.google.com/archive/p/word2vec/

43

Other word embeddings: GloVe
[Pennington et al. 2014]

▪ https://nlp.stanford.edu/projects/glove/

▪ “Global Vectors”

▪ Model is based on capturing global corpus statistics

▪ Incorporates ratios of probabilities from the word-word cooccurrence matrix
(intuitions of count-based models) with linear structures used by methods like
word2vec

https://nlp.stanford.edu/projects/glove/

44

Other word embeddings: fasttext
[Bojanowsi et al. 2017]

▪ Word2vec can’t handle unknown words and sparsity of rare word-forms (e.g. we
should be able to infer ”milking” from “milk” + “ing”)

▪ Uses subword models, representing each word as itself plus a bag of constituent n-
grams, with special boundary symbols < and > added to each word.

▪ Each word is represented by the sum of all of the embeddings of its constituent n-
grams. Unknown words can be represented by just the sum of the constituent n-
grams.

45

Gensim: Python Package for working
with word embeddings

https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html

46

Takeaways

▪ Intuitive ideas behind representing words as vectors

▪ Distributional Hypothesis

▪ Basic ideas behind TF-IDF weighting

▪ Basic ideas behind Word2Vec

o Difference between CBOW and Skip-gram

o Practical challenges

▪ Know where your embeddings came from and how they were made

47

Next Class

▪ How do we know if our embeddings work?

▪ What do we do with them?

48

Acknowledgements and Resources

▪ Slide content drew heavily from Emma Strubell and Yulia Tsvetkov’s slides:
http://demo.clab.cs.cmu.edu/11711fa20/slides/11711-04-word-vectors.pdf

▪ Resources:

o Lecture Notes from Stanford NLP class on word embeddings
https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_no
tes_draft.pdf

o Efficient Estimation of Word Representations in Vector Space (original word2vec paper)
https://arxiv.org/pdf/1301.3781.pdf

o Distributed Representations of Words and Phrases and their Compositionality (negative
sampling paper)
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4
923ce901b-Paper.pdf

o Jurafsky and Martin textbook Chap 6: https://web.stanford.edu/~jurafsky/slp3/6.pdf

http://demo.clab.cs.cmu.edu/11711fa20/slides/11711-04-word-vectors.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_notes_draft.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_notes_draft.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf

	Slide 1: Word Embeddings
	Slide 2: Background: Word Representations
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: How might we represent words?
	Slide 6: How might we represent words?
	Slide 7: How might we represent words?
	Slide 8: Relations between words
	Slide 9: Relations between words
	Slide 10: How might we represent words?
	Slide 11: Annotated Resources for Lexical Semantics
	Slide 12: How might we represent words?
	Slide 13: How to represent a word
	Slide 14: How to represent a word
	Slide 15: How to represent a word
	Slide 16: Encoding word similarity
	Slide 17: Word-word co-occurrence matrix
	Slide 18: Distributional hypothesis
	Slide 19: How to encode context
	Slide 20: How to encode context
	Slide 21: TF-IDF
	Slide 22: Encoding Context with TF-IDF
	Slide 23: Encoding Context with TF-IDF
	Slide 24: Encoding Context with TF-IDF
	Slide 25: Encoding Context with TF-IDF
	Slide 26: Encoding Context with TF-IDF
	Slide 27: Notes about TF-IDF
	Slide 28: Dimensionality Reduction
	Slide 29: Word2Vec
	Slide 30: Word2Vec
	Slide 31: Word2Vec: Two Algorithms
	Slide 32: Skip-gram: Probabilities
	Slide 33: Skip-gram: How do we learn u and w?
	Slide 34: Skip-gram: How do we learn u and w?
	Slide 35
	Slide 36: Quiz
	Slide 37: Skip-gram
	Slide 38: Skip-gram: Negative sampling
	Slide 39: Skip-gram: Negative sampling
	Slide 40: Choosing negative samples
	Slide 41: Recap
	Slide 42: Pre-trained Word2Vec Embeddings
	Slide 43: Other word embeddings: GloVe [Pennington et al. 2014]
	Slide 44: Other word embeddings: fasttext [Bojanowsi et al. 2017]
	Slide 45: Gensim: Python Package for working with word embeddings
	Slide 46: Takeaways
	Slide 47: Next Class
	Slide 48: Acknowledgements and Resources

