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Motivation

▪ Core question in understanding cultural and language evolution: how do words 
change meaning over time?

Hamilton, William L., Jure Leskovec, and Dan Jurafsky. "Diachronic Word Embeddings Reveal Statistical Laws of 

Semantic Change." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: 

Long Papers). 2016.

How can we represent 
meaning of a word?
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Motivation

▪ Can we use language analysis to identify and measure stereotypes?

▪ Example from last week:

o Using PMI scores, Wikipedia articles about women tend to talk personal life 
more

o Might we expect words like “family”, and “marriage” to be women-associated?

How can we measure “associations” between words?

Wagner, Claudia, et al. "It's a man's Wikipedia? Assessing gender inequality in an online encyclopedia." Proceedings of 
the international AAAI conference on web and social media. Vol. 9. No. 1. 2015.
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How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses
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How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

A sense or “concept” is the meaning component of a word.
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How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

▪ Relationships between words or senses

▪ Taxonomic relationships

▪ Word similarity, word relatedness
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Relations between words

▪ Synonyms have the same meanings in some or all contexts

o Couch / sofa, car / automobile

o [Note that there are no examples of perfect synonymy]

▪ Antonyms senses that are opposite with respect to one feature of meaning

o Dark / light, short / long, slow / fast

o [Otherwise they are very similar]

o [Antonyms can define a binary opposition or be at opposite ends of a scale]
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Relations between words

▪ Hypernym / Hyponym (superordinate / subordinate)

o One sense is a hyponym of another if the first sense is more specific, denoting a 
subclass of the other

Hyponym
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How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

▪ Relationships between words or senses

▪ Taxonomic relationships

▪ Word similarity, word relatedness
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Annotated Resources for Lexical 
Semantics

▪ https://wordnet.princeton.edu/

▪ (python packages)

https://wordnet.princeton.edu/
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How might we represent words?

“Lexical Semantics”

▪ Dictionary definition

▪ Lemma and word forms

▪ Senses

▪ Relationships between words or senses

▪ Taxonomic relationships

▪ Word similarity, word relatedness

▪ Semantic frames and roles

▪ Connotation and sentiment
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How to represent a word

▪ Until the ~2010s, in NLP words == atomic symbols

▪ One-hot representations in vector space:
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How to represent a word

▪ Until the ~2010s, in NLP words == atomic symbols

▪ One-hot representations in vector space:

Good things:

▪ Useful for coding identity

▪ Can do matrix operations:

o Feed into machine learning models

o Matrix decompositions
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How to represent a word

▪ Until the ~2010s, in NLP words == atomic symbols

▪ One-hot representations in vector space:

Bad things:

▪ Sparse representations that scale with 
vocabulary size

▪ “tacos” is orthogonal to “burritos”

▪ How can we encode word similarity (not 
just identity)?
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Encoding word similarity

▪ How can we encode word similarity (not just identity) in word 
representations?

▪ Consider encountering a new word: tezgüino

o A bottle of tezgüino is on the table

o Everybody likes tezgüino

o Don’t have tezgüino before you drive

o We make tezgüino out of corn
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Word-word co-occurrence matrix

https://www.baeldung.com/cs/co-occurrence-matrices

Apples are green and red.
Red apples are sweet.
Green oranges are sour
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Distributional hypothesis

▪ These representations encode distributional properties of each word.

▪ The distributional hypothesis: words with similar meaning are used in similar 
contexts.

“The meaning of a word is its use in the language.” [Wittgenstein 1943]

 

“If A and B have almost identical environments we say that they are synonyms.” [Harris 
1954]

“You shall know a word by the company it keeps.” [Firth 1957]
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How to encode context

Really really big

…

…

…

… sparse



20

How to encode context

▪ TF-IDF

▪ Word2Vec

▪ Not covering other methods: e.g. Brown clusters, Matrix factorization



TF-IDF
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Encoding Context with TF-IDF

▪ Consider a matrix of word counts across documents: term-document matrix

Bag-of-words document 
representation

word vector

Words like the, it, 
they are not very 
discriminative, we 
can do better 
than raw counts
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Encoding Context with TF-IDF

▪ TF-IDF incorporates two terms that capture these conflicting constraints:

o Term frequency (tf): frequency of the word t in the document

𝑡𝑓𝑡,𝑑 =  log(𝑐𝑜𝑢𝑛𝑡 𝑡, 𝑑 + 1)
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Encoding Context with TF-IDF

▪ TF-IDF incorporates two terms that capture these conflicting constraints:

o Term frequency (tf): frequency of the word t in a cluster (or “class”)

o Document frequency (df): number of documents that a term occurs in

o Inverse document frequency (idf):

o (N) is the number of documents in the corpus

𝑡𝑓𝑡,𝑐 =  log(𝑐𝑜𝑢𝑛𝑡 𝑡, 𝑑 + 1)

𝑖𝑑𝑓𝑡 =  log( 𝑁
𝑑𝑓𝑡

)
Higher for terms 

that occur in 
fewer documents
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Encoding Context with TF-IDF

▪ TF-IDF incorporates two terms that capture these conflicting constraints:

o Term frequency (tf): frequency of the word t in the document

o Document frequency (df): number of documents that a term occurs in

o Inverse document frequency (idf):

o (N) is the number of documents in the corpus

▪ TF-IDF combines these two terms: 

𝑡𝑓𝑡,𝑑 =  log(𝑐𝑜𝑢𝑛𝑡 𝑡, 𝑑 + 1)

𝑖𝑑𝑓𝑡 =  log( 𝑁
𝑑𝑓𝑡

)
Higher for terms 

that occur in 
fewer documents

𝑡𝑓−𝑖𝑑𝑓𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 ∗ 𝑖𝑑𝑓𝑡
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Encoding Context with TF-IDF

▪ Consider a matrix of word counts across documents: term-document matrix

Bag-of-words document 
representation

word vector

We could use TF-
IDF here instead 
of counts
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Notes about TF-IDF

▪ Very useful way of creating document embeddings

o Designed for and still excels at document retrieval

o Often useful as features for classification models

▪ We could use variants of log-odds with a Dirichlet prior ratios ortopic models to 
create document or word embeddings

▪ Word-embedding use cases of TF-IDF are not as common



28

Dimensionality Reduction

▪ TF-IDF representations are still sparse

o Wikipedia: ~29 million English documents. Vocab: ~1 million words.

▪ Sparse vs. dense vectors:

o Short vectors often easier to use as features in a classifier (fewer parameters).

o Dense vectors may generalize better than storing explicit counts.

o May better capture synonymy

o In practice, they just work better [Baroni et al. 2014]

▪ How do we build dense vectors?



Word2Vec
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Word2Vec

▪ Instead of counting how often each word w occurs near “corn”, train a classifier on a 
binary prediction task: Is w likely to show up near “corn”?

▪ Don’t actually care about performing this task, but we’ll take the learned classifier 
weights as the word embeddings

▪ Training is self-supervised: no annotated data required, just raw text!
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Word2Vec: Two Algorithms

▪ Context bag-of-words (CBOW): predict 
current word using context

o 𝑃 𝑤𝑡  𝑤𝑡+1, … , 𝑤𝑡+𝑘 , 𝑤𝑡−1, … , 𝑤𝑡−𝑘)

▪ Skip-gram: predict each context word 
using current word

o 𝑃(𝑤𝑡+1, … , 𝑤𝑡+𝑘 , 𝑤𝑡−1, … , 𝑤𝑡−𝑘| 𝑤𝑡)
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Skip-gram: Probabilities

… that Europe needs unified banking regulation to replace the hodgepodge …
𝑤𝑡𝑤𝑡−1𝑤𝑡−2𝑤𝑡−3 𝑤𝑡+1 𝑤𝑡+2 𝑤𝑡+5…

𝑃 𝑤𝑡+𝑗 𝑤𝑡 = 𝑃 𝑜 𝑐) =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

Dot product (similarity 

metric)
Larger dot product = 

larger similarity

softmax functiono = index of outside (context) word

c = index of center word (𝑤𝑡)
V = vocab size

u = vector for word as outside (context)

v = vector for word as center

We want to train a model to output 𝑃 𝑤𝑡+𝑗 𝑤𝑡 . We define:
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Skip-gram: How do we learn u and w?

… that Europe needs unified banking regulation to replace the hodgepodge …
𝑤𝑡𝑤𝑡−1𝑤𝑡−2𝑤𝑡−3 𝑤𝑡+1 𝑤𝑡+2 𝑤𝑡+5…

m = 5

Data Likelihood: probability of any context word given center word (maximize) 

𝐿 =
1

𝑇
ෑ

𝑡=1

𝑇

ෑ

−𝑚≤𝑗≤𝑚,𝑗≠0

𝑃(𝑤𝑡+𝑗|𝑤𝑡, 𝜃)

Objective Function: negative log probability (minimize)

𝐿 = −
1

𝑇


𝑡=1

𝑇



−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃(𝑤𝑡+𝑗|𝑤𝑡, 𝜃)

[Note we’re assuming 
conditional independent]
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𝐿 = −
1

𝑇


𝑡=1

𝑇



−𝑚≤𝑗≤𝑚,𝑗≠0

log 𝑃(𝑤𝑡+𝑗|𝑤𝑡, 𝜃)

▪ Gradient-based estimation (e.g. stochastic gradient descent)
▪ Start with uninformed guess for u and w (e.g. random)
▪ Iteratively change u and w in the way that locally best-improves the 

guess
▪ Computing gradients (e.g. derivatives) of the objective function with 

respect to u and w inform how to change them

Skip-gram: How do we learn u and w?

𝑃 𝑤𝑡+𝑗 𝑤𝑡 = 𝑃 𝑜 𝑐) =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)



https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling 

“v” input vector matrix “u” output vector matrix

At the end of training we’ve learned 2 sets of embeddings: we can average them 
or just keep one of them

exp(𝑢𝑜
𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

N = number of 
dimensions in 
embeddings 
(parameter you 
choose)

https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling
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Quiz

Consider three categories of words that have different relationships in our 
favorite dataset of Democratic and Republican congressional speech. 

A. Synonyms that are nearly interchangeable like “death-tax” and “estate-
tax”, but tend to be used by different party members 

B. Words that are used by different individuals and have different meanings, 
but tend to appear in identical sentences like “Texas” and “New York” 
(example sentence: “My constituents from Texas”)

C. Words that tend to co-occur in the same speech, but maybe not the 
same sentences. For example a speech healthcare might refer to 
“insurance” and “doctors” 

1. Let’s we construct TF-IDF word embeddings (from a term-document matrix) 
over the corpus. Which of the above categories do expect to have similar 
embeddings (select all that apply)?

2. Let’s we construct CBOW Word2Vec embeddings. Which of the above categories 
do expect to have similar embeddings (select all that apply)?

3. Let’s we construct Skip-gram Word2Vec embeddings. Which of the above 
categories do expect to have similar embeddings (select all that apply)?
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Skip-gram

exp(𝑢𝑜
𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

▪ Problem:

o Denominator is computationally expensive! O(VK)

o Solutions:

• Hierarchical softmax O(log V)

• Negative Sampling O(1)
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Skip-gram: Negative sampling

exp(𝑢𝑜
𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

Encourage center word 

and context word to 
have similar vectors

Encourage center word 

and all other words to 
have different vectors

▪ Intuition: we don’t need to down-weight all other words at once, we can chose a 
small number of negative samples
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Skip-gram: Negative sampling

▪ New objective (single context word, k negative samples)

P(o | c) = 
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑖=1
𝑉 exp(𝑢𝑖

𝑇𝑣𝑐)

1

1 +  exp(−𝑢𝑜
𝑇𝑣𝑐)

log 𝑃 𝑜+ 𝑐 + 

𝑖=1

𝑘

log(1 − 𝑃 𝑜𝑖 𝑐 )

▪ (Problem changes from multiclass to binary)
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Choosing negative samples

▪ Generally choose frequent words

▪ Could choose purely based on frequency P(w)

▪ In practice, 𝑃𝛼 𝑤 =
𝑐𝑜𝑢𝑛𝑡(𝑤)𝛼

σ𝑤 𝑐𝑜𝑢𝑛𝑡(𝑤)𝛼  with 𝛼 = 0.75 works well (gives rare words slightly 

higher probability)
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Recap

▪ We want meaningful representations of words that we can use for corpus analytics 
(and other things)

▪ By defining a fake task, predicting context from a word (skip-gram) or a word from 
context (CBOW), we can learn meaningful vector

o Our training objective specifically encourages words that co-occur together or 
occur in similar contexts to have similar vectors

▪ Actual implementation requires additional tricks for reducing computational 
complexity
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Pre-trained Word2Vec Embeddings

▪ https://code.google.com/archive/p/word2vec/ 

▪ You can train embeddings on your own data

▪ Depending on your application, you can also start with embeddings trained on large 
data set

https://code.google.com/archive/p/word2vec/
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Other word embeddings: GloVe 
[Pennington et al. 2014]

▪ https://nlp.stanford.edu/projects/glove/

▪ “Global Vectors”

▪ Model is based on capturing global corpus statistics

▪ Incorporates ratios of probabilities from the word-word cooccurrence matrix 
(intuitions of count-based models) with linear structures used by methods like 
word2vec

https://nlp.stanford.edu/projects/glove/
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Other word embeddings: fasttext 
[Bojanowsi et al. 2017]

▪ Word2vec can’t handle unknown words and sparsity of rare word-forms (e.g. we 
should be able to infer ”milking” from “milk” + “ing”)

▪ Uses subword models, representing each word as itself plus a bag of constituent n-
grams, with special boundary symbols < and > added to each word.

▪ Each word is represented by the sum of all of the embeddings of its constituent n-
grams. Unknown words can be represented by just the sum of the constituent n-
grams.
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Gensim: Python Package for working 
with word embeddings

https://radimrehurek.com/gensim/models/word2vec.html 

https://radimrehurek.com/gensim/models/word2vec.html
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Takeaways

▪ Intuitive ideas behind representing words as vectors

▪ Distributional Hypothesis

▪ Basic ideas behind TF-IDF weighting

▪ Basic ideas behind Word2Vec

o Difference between CBOW and Skip-gram

o Practical challenges

▪ Know where your embeddings came from and how they were made
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Next Class

▪ How do we know if our embeddings work?

▪ What do we do with them?
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Acknowledgements and Resources

▪ Slide content drew heavily from Emma Strubell and Yulia Tsvetkov’s slides: 
http://demo.clab.cs.cmu.edu/11711fa20/slides/11711-04-word-vectors.pdf 

▪ Resources:

o Lecture Notes from Stanford NLP class on word embeddings 
https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_no
tes_draft.pdf 

o Efficient Estimation of Word Representations in Vector Space (original word2vec paper) 
https://arxiv.org/pdf/1301.3781.pdf 

o Distributed Representations of Words and Phrases and their Compositionality (negative 
sampling paper) 
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4
923ce901b-Paper.pdf  

o Jurafsky and Martin textbook Chap 6: https://web.stanford.edu/~jurafsky/slp3/6.pdf 

http://demo.clab.cs.cmu.edu/11711fa20/slides/11711-04-word-vectors.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_notes_draft.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_notes_draft.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf
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