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Overview

▪ Recap: last class

o Why annotate data?

o Tips and tricks for components of annotation process

o Annotator agreement metrics

o Ethics of crowdsourcing

This class: What do we do with annotated data?

▪ Logistic Regression

▪ Neural networks

▪ Adjusting for model errors
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Methods of Data analysis

▪ We want to know if (and when and how) Republicans talk about taxes more than 
Democrats:

1. We use word statistics to find if words like “taxes” and “spending” are more 
common in republican speeches

2. We can train a topic model, identify the tax-related topics and determine if that 
topic is more common in Republican vs. Democratic speech (or incorporate 
party affiliation as co-variate in STM)

3. We could go through every speech by hand:

• Label if each speech or sentence or word is related to taxes

• Count if we labeled more Republican speech than Democratic 
speech

4. We can automate #3 using machine learning



Logistic Regression
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Components of a probabilistic machine 
learning classifier

▪ Given m input/output pairs (x(i),y(i)):

1. A feature representation of the input. For each input observation x(i), a vector 
of features [x1, x2, ... , xn]. Feature j for input x(i) is xj, more completely xj

(i), or 
sometimes fj(x).

2. A classification function that computes ොy, the estimated class, via p(y|x), like 
the sigmoid or softmax functions.

3. An objective function for learning, like cross-entropy loss. 

4. An algorithm for optimizing the objective function: stochastic gradient 
descent. 
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1. Feature Representation
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Feature representation

▪ We can craft specific features:

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate . 
So why was it so enjoyable  ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing .  It sucked me in , and it'll do the same to you  .

x1=3 x6=4.19

x3=1

x4=3
x5=0

x2=2

Figure5.2 A sample mini test document showing theextracted features in the vector x.

Given these 6 features and the input review x, P(+ |x) and P(− |x) can be com-

puted using Eq. 5.5:

p(+ |x) = P(Y = 1|x) = s (w·x+ b)

= s ([2.5,− 5.0,− 1.2,0.5,2.0,0.7] ·[3,2,1,3,0,4.19]+ 0.1)

= s (.833)

= 0.70 (5.6)

p(− |x) = P(Y = 0|x) = 1− s (w·x+ b)

= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property

of the input can beafeature. Consider the task of per iod disambiguation: deciding

if a period is the end of a sentence or part of a word, by classifying each period

into one of two classes EOS (end-of-sentence) and not-EOS. We might use features

like x1 below expressing that the current word is lower case and the class is EOS

(perhaps with a positive weight), or that the current word is in our abbreviations

dictionary (“Prof.” ) and theclass isEOS(perhapswith anegativeweight). A feature

can also express a quite complex combination of properties. For example a period

following an upper case word is likely to be an EOS, but if the word itself is St. and

the previous word is capitalized, then the period is likely part of a shortening of the

word street.

x1 =

⇢
1 if “Case(wi) = Lower”

0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”

0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi− 1) = Cap”

0 otherwise

Designing features: Features are generally designed by examining the training

set with an eye to linguistic intuitions and the linguistic literature on the domain. A

careful error analysis on the training set or devset of an early version of a system

often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-

nations of moreprimitive features. Wesaw such afeature for period disambiguation

above, where a period on the word St. was less likely to be the end of the sentence

if the previous word was capitalized. For logistic regression and naive Bayes these

combination features or feature interactions have to be designed by hand.feature
interactions
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Feature representation

▪ Common choice for document-level tasks:

o BOW representation (with TF-IDF weighting)

Bag-of-words document 
representation



2. Classification Function
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Binary Classification in Logistic 
Regression

▪ Given a series of input/output pairs:

o (x(i), y(i))

▪ For each observation x(i) 

o We represent x(i) by a feature vector [x1, x2,…, xn]

o We compute an output: a predicted class ො𝑦(i)  {0,1}

o (multinomial logistic regression: ො𝑦  {0, 1, 2, 3, 4})
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Introducing feature weights

▪ For feature xi, weight wi tells is how important is xi 

o xi ="review contains ‘awesome’":      wi =  +10

o xj ="review contains ‘abysmal’":      wj = -10

o xk =“review contains ‘mediocre’":   wk = -2

▪ Feature weights are useful for learning an accurate classifier, but they are also 
useful for analyzing feature importance

o Example: we want to learn what words people perceive as more polite and 
respectful

• We have annotators rate if a text is polite/respectful or not

• We train a classifier and examine which features are weighted the highest
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How to do classification

▪ For each feature xi, introduce weight wi which tells us importance of xi

o (Plus we'll have a bias b)

▪ We'll sum up all the weighted features and the bias

▪ If this sum is high, we say y=1; if low, then y=0

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment” , the features represent counts

of words in a document, and P(y = 1|x) is the probability that the document has

positive sentiment, while and P(y = 0|x) is the probability that the document has

negativesentiment.

Logistic regression solves this task by learning, from a training set, a vector of

weightsand abiasterm. Each weight wi isareal number, and isassociated with one

of the input features xi . Theweight wi represents how important that input feature is

to the classification decision, and can be positive (meaning the feature is associated

with the class) or negative (meaning the feature is not associated with the class).

Thus wemight expect in asentiment task theword awesome to haveahigh positive

weight, and abysmal to have avery negative weight. The bias term, also called thebias term

intercept, is another real number that’sadded to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in

training— theclassifier first multiplieseach xi by itsweight wi , sumsup theweighted

features, and adds the bias term b. The resulting single number z expresses the

weighted sum of the evidence for theclass.

z =

 
nX

i= 1

wixi

!

+ b (5.2)

In therest of thebook we’ ll represent such sumsusing thedot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a·b is the sum of

the products of the corresponding elements of each vector. Thus the following is an

equivalent formation to Eq. 5.2:

z = w·x+ b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie

between 0 and 1. In fact, since weights are real-valued, the output might even be

negative; z ranges from − • to • .

Figure5.1 Thesigmoid function y= 1
1+ e− z takesareal valueand mapsit to therange[0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash

outlier values toward 0 or 1.

To create a probability, we’ ll pass z through the sigmoid function, s (z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-

tion, and gives logistic regression itsname. Thesigmoid hasthefollowing equation,logistic
function

shown graphically in Fig. 5.1:

y = s (z) =
1

1+ e− z
(5.4)
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We want a probabilistic classifier

We need to formalize “sum is high”.

p(y=1|x; θ)

p(y=0|x; θ)
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The problem:  z isn't a probability, it's 
just a number!

▪ Solution: use a function of z that goes from 0 to 1
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Logistic regression solves this task by learning, from a training set, a vector of
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negative; z ranges from− • to • .
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1+ e− z takesareal valueand mapsit to therange[0,1].
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To create a probability, we’ ll pass z through the sigmoid function, s (z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-

tion, and gives logistic regression itsname. Thesigmoid hasthefollowing equation,logistic
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y = s (z) =
1

1+ e− z
=

1

1+ exp(− z)
(5.4)

(For therest of thebook, we’ ll use thenotation exp(x) to mean ex.) Thesigmoid

hasanumber of advantages; it takesareal-valued number and maps it into therange
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The very useful sigmoid or logistic 
function

5.1 • CLASSIFICATION: THE SIGMOID 3
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Idea of logistic regression

▪ We’ll compute w∙x+b

▪ And then we’ll pass it through the sigmoid function:

▪                σ(w∙x+b)

▪ And we'll just treat it as a probability
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Making probabilities with sigmoids

=
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Turning a probability into a classifier

0.5 here is called the decision boundary 



3. Loss Function
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Loss function

▪ Supervised classification: 

o We know the correct label y (either 0 or 1) for each x. 

o But what the system produces is an estimate, ො𝑦 

▪ We want to set w and b to minimize the distance between our estimate ො𝑦(i) and the 
true y(i). 

o We need a distance estimator: a loss function or a cost function (#3)

o We need an optimization algorithm to update w and b to minimize the loss (#4)
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Loss Function

▪ We want to know how far is the classifier output:

▪                  ො𝑦 = σ(w∙x+b)

▪ from the true output:

▪                   y        [= either 0 or 1]

▪ We'll call this difference:

▪                      L( ො𝑦 ,y) = how much ො𝑦 differs from the true y 
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Deriving cross-entropy loss for a single 
observation x

▪ Goal: maximize probability of the correct label p(y|x)

▪ Since there are only 2 discrete outcomes (0 or 1) we can express the probability 
p(y|x) from our classifier (the thing we want to maximize) as

▪ noting:

o if y=1, this simplifies to ො𝑦 

o if y=0, this simplifies to 1- ො𝑦 
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Deriving cross-entropy loss for a single 
observation x

▪ Goal: maximize probability of the correct label p(y|x)

▪ Since there are only 2 discrete outcomes (0 or 1) we can express the probability 
p(y|x) from our classifier (the thing we want to maximize) as

▪ Take the log of both sides
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Deriving cross-entropy loss for a single 
observation x

▪ Goal: maximize probability of the correct label p(y|x)

▪ Now flip sign to turn this into a loss: something to minimize
▪ Cross-entropy loss (because is formula for cross-entropy(y, ො𝑦 ))

▪ Or, plugging in definition of ො𝑦:



4. Stochastic Gradient Descent
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Our goal: minimize the loss

▪ Let's make explicit that the loss function is parameterized by weights 𝛳=(w,b)

•  And we’ll represent ො𝑦 as f (x; θ ) to make the dependence on θ more obvious

▪ We want the weights that minimize the loss, averaged over all examples:
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Intuition of gradient descent

• How do I get to the bottom of this river canyon?

Look around me 360∘

Find the direction of steepest 
slope down

Go that way
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Gradient Descent

▪ The gradient of a function of many variables is a vector pointing in the direction of 
the greatest increase in a function. 

▪ For each dimension wi the gradient component i tells us the slope with respect to 
that variable. 

o “How much would a small change in wi influence the total loss function L?” 

o We express each element as a partial derivative ∂ of the loss ∂wi 

o The gradient is then defined as a vector of these partials. 

▪ Gradient Descent: Find the gradient of the loss function at the current point and 
move in the opposite direction. 

10 CHAPTER 5 • LOGISTIC REGRESSION

example):

wt+ 1 = wt − h
d

dw
L( f (x;w),y) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many

variables, because we don’ t just want to move left or right, we want to know where

in the N-dimensional space (of the N parameters that make up q) we should move.

The gradient is just such a vector; it expresses the directional components of the

sharpest slopealong each of thoseN dimensions. If we’rejust imagining two weight

dimensions(say for oneweight wandonebiasb), thegradient might beavector with

two orthogonal components, each of which tells us how much the ground slopes in

thew dimension and in theb dimension. Fig. 5.4 shows avisualization of thevalue

of a2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure5.4 Visualization of the gradient vector at the red point in two dimensions w and b,

showing thegradient asared arrow in thex-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or

2, since the input feature vector x can be quite long, and we need a weight wi for

each xi . For each dimension/variable wi in w (plus thebiasb), thegradient will have

a component that tells us the slope with respect to that variable. Essentially we’re

asking: “How much would asmall change in that variable wi influence the total loss

function L?”

In each dimension wi , weexpress theslopeasapartial derivative ∂
∂wi

of the loss

function. Thegradient is then defined asavector of thesepartials. We’ ll represent ŷ

as f (x;q) to makethedependence on q moreobvious:

—qL( f (x;q),y)) =

2

6
6
6
6
4

∂
∂w1

L( f (x;q),y)
∂
∂w2

L( f (x;q),y)

...
∂
∂wn

L( f (x;q),y)

3

7
7
7
7
5

(5.15)

Thefinal equation for updating q based on thegradient is thus

qt+ 1 = qt − h—L( f (x;q),y) (5.16)

“learning rate” hyperparameter 
determines how far we move in the 
direction specified by the gradient



Neural Networks
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Components of a probabilistic machine 
learning classifier

▪ Given m input/output pairs (x(i),y(i)):

1. A feature representation of the input. For each input observation x(i), a vector 
of features [x1, x2, ... , xn]. Feature j for input x(i) is xj, more completely xj

(i), or 
sometimes fj(x).

2. A classification function that computes ොy, the estimated class, via p(y|x), like 
the sigmoid or softmax functions.

3. An objective function for learning, like cross-entropy loss. 

4. An algorithm for optimizing the objective function: stochastic gradient 
descent. 
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2. Neural Networks: Made up of units

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights

Input layer

Weighted sum

Non-linear transform

Output value

bias
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2. Binary Logistic Regression as a 1-layer 
Network

w

xn
x
1

𝑦 = 𝜎(𝑤 ∙ 𝑥 + 𝑏)

+
1

w1 wn b

(y is a scalar)
σOutput layer

(σ node)

Input layer
vector x

(we don't count the input layer in counting layers!)

(vector)
(scalar)
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Two-layer Neural Network with scalar 
output

U

W

xnx1 +1

b

hidden units

(σ node)

Input layer

(vector)

Output layer

(σ node)

Need a non-linear 
function, e.g. sigmoid, 
ReLU, tanh

z = 𝑈ℎ
𝑦 = 𝜎(𝑧)
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4. Backpropogation for Gradient 
Estimation

▪ We can train the model in a similar way, but we need the derivative of the loss with 
respect to each weight in every layer of the network 

o But the loss is computed only at the very end of the network! 

▪ Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)

o Algorithm for gradient estimation
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1. Learned word embeddings instead of 
crafted features



Evaluation and Prevalence 
Estimation
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Evaluation Metrics

▪ How can we tell if model is correct?

o Performance on held-out test set

▪ Data splits:

o Training set: used to learn model parameters

o Validation/development set: used to learn hyperparameters, debug, choose 
best model instance

o Test set: used to evaluate model performance
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Evaluation

Gold Labels

Not 

Offensive

Offensive Sum

Model

Prediction

Not 

Offensive
147 50

197

Offensive 10 15 25

Sum 157 65 222

Accuracy: 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑇𝑜𝑡𝑎𝑙
=

147+15

222
 = 73% 

Precision: 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

15

15+10
 = 60% 

Recall: 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

15

15+50
 = 23% 
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Prevalence Estimates

▪ We often want to use the model for prevalence estimates

o Did prevalence of positive emotions increase over time?
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Simple Approach: Classify and Count 
(CC)

▪ Convert classifier output pi to binary decision and compute average over all n data 
points (model estimates that x% of tweets express anger)

George Forman. 2005. Counting positives accurately despite inaccurate classification. In European Conference on 

Machine Learning.

Keith, Katherine, and Brendan O’Connor. "Uncertainty-aware generative models for inferring document class 

prevalence." Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018

▪ What if our held-out test accuracy is 75%? Should we still count all outputs predicted 
by the model?



43

Adjusted Classify and Count (ACC) 

▪ Dependent on the correctness of TPR and FPR 

George Forman. 2005. Counting positives accurately despite inaccurate 

classification. In European Conference on Machine Learning.
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Probablistic Classify and Count (PCC) 

▪ Is typically effective if model is well-calibrated

o For all test samples where p=0.9, ~90% should be true positives

o For all test samples where p=0.7, ~70% should be true positives

o For all test samples where p=0.1, ~10% should be true positives

Dallas Card and Noah A Smith. 2018. The importance of calibration for estimating proportions from annotations. In 

Proceedings of Empirical Methods in Natural Language Processing



45

Design-based Supervised Learning

Egami, Naoki, et al. "Using Large Language Model Annotations for the Social Sciences: A General Framework of 

Using Predicted Variables in Downstream Analyses.”." (2024).

▪ Scenario:

o We have a classification model that outputs predicted values

o Our model probably has non-random errors

o  We’re also willing to hand-code some data, so we have “gold” data

Note: If classification errors are totally random, we can ignore them, they won’t change 

our prevalence estimates

▪ This set-up is generalizable to lots of settings where we have some data we trust 
more than others

o Some data is hand-coded and some labels are predicted

o Some data is coded by researchers and some by crowd-workers



46

Design-based Supervised Learning

Egami, Naoki, et al. "Using Large Language Model Annotations for the Social Sciences: A General Framework of 

Using Predicted Variables in Downstream Analyses.”." (2024).

• 𝑅𝑖 is a binary variable taking 1 if document i is expert-coded and 0 
otherwise

• 𝜋𝑖 is the probability of sampling document i for expert coding

Example: adjustment term will be large if we coded a 
small random sample of the data
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Validation through simulations
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