JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Network Metrics

Yuanhao (Colin) Liu
3/05/25



Outline

Introduction and definitions
Basic Network Metrics
Advanced Network Methods
Graph Neural Network



JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Introduction and Definitions



Motivation: understand relationship

= High School Partnership Network

Male
Female

F1G. 3.—Temporally ordered ties in the Jefferson High partnership network

£ [l . Bearman, P. S., Moody, 1., & Stovel, K. (2004). Chains of affection: The structure of adolescent romantic and sexual

| }
L networks. American journal of sociology, 110(1), 44-91.



Motivation: understand epidemic
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Fig. 3. Size of Largest component and bicomponent by average number of sexual partners for
short-tailed and scale-free distributions. The curves plot the growth of the largest component
and bicomponent as a function of the average degree, based on 100 simulations of a 10,000-
node network at each degree setting. The red curve plots the analytic solution for the size of
the giant component for the simulated networks with scale-free distributions, and the orange
curve plots the largest bicomponent. The dark blue curve plots the analytic solution for the
size of the largest component for the simulated low-degree networks, and the light blue curve
plots the size of the largest bicomponent. The bicomponent curves are not continuous due to

sampling.

g JOHN H Moody, J., Adams, J., & Morris, M. (2017). Epidemic potential by sexual activity distributions. Network science, 5(4),
b
461-475.



Motivation: understand online “epidemic”
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Fig. 1 Rumor cascades.

s Howsass - Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. science, 359(6380), 1146-1151.




Motivation: how to succeed as individual

= Looking for a job? Making Weak Ties.

= Want to be influential? Try something new, but don't go too far.

The Strength of Weak Ties'

Mark S. Granovetter
Johns Hopkins University

Analysis of social networks is suggested as a tool for linking micro
and macro levels of sociological theory. The procedure is illustrated
by elaboration of the macro implications of one aspect of small-scale
interaction: the strength of dyadic ties. It is argued that the degree
of overlap of two individuals’ friendship networks varies directly
with the strength of their tie to one another. The impact of this
principle on diffusion of influence and information, mobility oppor-
tunity, and community organization is explored. Stress is laid on the
cohesive power of weak ties. Most network models deal, implicitly,
with strong ties, thus confining their applicability to small, well-
defined groups. Emphasis on weak ties lends itself to discussion of
relations between groups and to analysis of segments of social struc-
ture not easily defined in terms of primary groups.

Atypical Combinations and
Scientific Impact

Brian Uzzi, Satyam Mukherjee,? Michael Stringer,>* Ben Jones™**

Novelty is an essential feature of creative ideas, yet the building blocks of new ideas are often
embodied in existing knowledge. From this perspective, balancing atypical knowledge with
conventional knowledge may be critical to the link between innovativeness and impact. Our
analysis of 17.9 million papers spanning all scientific fields suggests that science follows a
nearly universal pattern: The highest-impact science is primarily grounded in exceptionally
conventional combinations of prior work yet simultaneously features an intrusion of unusual
combinations. Papers of this type were twice as likely to be highly cited works. Novel combinations
of prior work are rare, yet teams are 37.7% more likely than solo authors to insert novel
combinations into familiar knowledge domains.

Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology, 78(6), 1360-1380.
Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 7

342(6157), 468-472.



Motivation: how to promote mobility as society

= https://socialcapital.org/
= Go to the right schools and make the right friends
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https://socialcapital.org/

How might we represent network?

Represent connections between vertices/nodes
= Vertex: a node of the graph
= Edge: a link between two vertices

A graph consists of a set of nodes and a set of edges
" G(V,E)

E-N
oy
ol



Graph Data: Adjacency Matrix

(0 1 1 1 0)
= The matrix of vertices connections 1 0 0 1 0
Encode in a symmetric matrix (for undirected network) A=|1 0 0 1 1
(n X n) matrix A T
0 0 1 1 0)

The adjacency matrix has elements

a;; = {1 ifi anc? j are connected Mark e 1 e 1 0
0 otherwise Peter 1 e 1 o )

Bob 0 1 8 1 e

Jill 1 2, 1 8 1

Aaron e ; 1 8 1 8

B3 s H :
L= il Example from:



https://bookdown.org/markhoff/social_network_analysis/understanding-network-data-structures.html

Graph Data: Edge Lists

= Two-column matrices that directly indicate how vertices are connected

'.thzschlcudcr twork catalogue, repository and centrif

Mark Peter Bob Jill Aaron e

Mark %] 1 %] 1 8
PersonA PersonB
Peter 1 [} 1 e 1
1 Mark Peter
Bob e 1 e 1 e T
2 Mark Jill
3111 1 e 1 a 1 e —————
3 Peter Bob gmmm’mm
Aaron 2] 1 © 1 e s
4  Peter Aaron s
5 Bob 3Jill e
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B3 [0HNS HOPK NS
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Collections of Social Network Datasets: h.ttp&lineimnks.skemd.d_el


https://bookdown.org/markhoff/social_network_analysis/understanding-network-data-structures.html
https://networks.skewed.de/

Directed & undirected
Types of Edges . Commm&;cﬁgggg vs. friendship networks —
I

= Directed vs. undirected

Directed sociomatrix
B

C

0
0
0
0
0

e ] 3 g
@ IO HOPRINS pyample from: hitps://sonic.northwestem.edu/ 12


https://sonic.northwestern.edu/

Organizations: authority, trust, & friendship

Types of Edges

= Weighted vs. unweighted

= Multiplex B ., e, D,
\I1 1) 0 0 0
A 1 1 il 0
b 0 0 0 it .@
" ¥ % " " :5 0 0 T 0 e,
* Affect in a sorority vs. campaign financing v o 0o 1 o
Z e D ° Pl o [0 o o
Bipartite sociomatrix
" _— 1 2 | 3 a | 5
BN 0 1 0 0
Kl : - oo o
n 0 1 ik 1 0
n 1 0 0 0 0

Example from: https://sonic.northwestem.edu/
Example of hypergraph: Lungeanu, A., Carter, D. R., DeChurch, L. A., & Contractor, N. S. (2021). How team interlock

ecosystems shape the assembly of scientific teams: A hypergraph approach. In Computational Methods for
Communication Science (pp. 95-119). Routledge.

rf" JOHNS HOPKINS
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Network Parameters

Different Dimensions to Consider

= Entity: Nodes vs. Edges (e.g., degree, path length)

Scale: Local vs. Global (e.g., cluster, dimensions)

Topology: Structure (e.g., small world network, scale-free network)
Quantity: Volume (e.qg., weighted edges, information/resource/traffic flow)
Quality: Classification (e.g., friends, family, classmate...)

Different combinations of dimensions create different network metrics;
You can always create your own.

15



Example 1: Network Density

Edges * Global (Ignore multiplex hypergraph topology for all examples)
= For a directed unweighted network with n nodes, the max number of possible edges is:

nn—1)

= For an undirected unweighted network:
nn—1)/2

Number of edges

= Network density:
Number of possible edges

16
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Americans are becoming more isolated

Table 3. Structural Characteristics of Core Discussion Networks

1985 (N = 1,167%)

2004 (N = 788b)

Network Density
<25 9.9% 7.3%
.25-49 18.5% 11.8%
.50-74 37.9% 39.5%
>.74 33.7% 41.4%
Mean .60 .66
SD :33 33
Mean Frequency of Contact (days per year)
6-12 3.7% 3.0%
>12-52 15.3% 10.6%
>52-365 81.0% 86.4%
Mean 208.92 243.81
SD 117.08 114.86
Length of Association (in years)
>0-4.5 12.1% 10.7%
>4.5-8+ 87.9% 89.3%
Mean 6.72 7.01
SD 1.34 1.00

McPherson, M., Smith-Lovin, L., & Brashears, M. E. (2006). Social isolation in America: Changes in core discussion
networks over two decades. American sociological review, 71(3), 353-375.

17



Example 2: Closeness Centrality

Nodes * Global
= Measuring the mean shortest distance from a node to every other nodes in a network

with n nodes:
1
n—1 Z dij

= Where d represent the length of the shortest path between i and j. Here, the path
length refers to the number of nodes between i and j (degrees of separation).

18
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How minorities generate impact from a

Table 1. Variable Descriptions and Descriptive Statistics

peripheral location

Media Influence Number of words in press release reproduced verbatim 4.590 18.736
(Outcome) or paraphrased by six national media sources.

Fringe Media Euclidean distance between five dummy variables 913 197
Frames describing civil society organization media frames

about Islam in each press release and average for all
other organizations during the same year.

™ Sta rt fro m peri p he ry a nd Cha n nel Assets Total assets of organization sponsoring press release at 27.0 68.3

vear-end (mill) (mill)
Inter-organizational Glosenesscentrality of organization within field .188 .355
th h t' t' t I H Networks (constructed using interlocking directorates by year).
rou g e m O IO n s (se n I m e n a na ys Is) Narrowness of Dummy variable that describes whether organization’s .493 .500
Mission primary goal is influencing media discourse about
Islam (1 = yes. 0 = no).
100 Displays of Fear or Dummy variable that describes whether civil society 654 478
Anger organization displays fear or anger in press release
(1 =yes, 0 =no).
75 News Cycle Number of hits for the term “Muslim” or “Islam” on 8,264 2,830
° Google News during month the press release was issued.
é Previous Media Dummy variable that describes whether civil society 524 .500
-_§ Coverage _organizalion i55}1i1)g the press release previously
g 50 influenced media discourse about Islam.
3 U.S. Government ~ Dummy variable that describes whether the press .283 451
g‘ Targeted release targets an individual or organization
H representing the U. S. government (1 = yes, 0 = no).
& 25 Public Interest Dummy variable that describes whether main event .061 .239
described in the press release was one of the top-10
Google searches during the week it was issued (1 =
yes, 0 = no).
0 Violence or Dummy variable that describes whether main event .223 416
Disruptive described in the press release involved physical
[ 5 10 Activity violence, strikes, protests, rallies, or boycotts (1 = yes,
Days 0 = no).
Cognitive = Emotional Event in United Dummy variable that describes whether main event 572 .450
States described in the press release occurred in the United
Figure 1. Idealized Opportunity Structure Created by Cognitive-Emotional Currents States (1 = yes, 0 = no).

Bail, C. A. (2012). The fringe effect: Civil society organizations and the evolution of media discourse about Islam since
the September 11th attacks. American Sociological Review, 77(6), 855-879.

5;};_‘- JOHNS HOPKINS Bail, C. A., Brown, T. W., & Mann, M. (2017). Channeling hearts and minds: Advocacy organizations, cognitive-emotionfb
currents, and public conversation. American Sociological Review, 82(6), 1188-1213.



Example 3: Quarter-Power Scaling

Topology * Volume * Scale
= QObservation: Many biological scaling can be described as

Y = aMP?

Where Y is a biological variable, such as “/ife spar’’; a is a constant, b is a scaling exponent;

M is a metabolic measurement, such as “blood circulation time". The value of b is usually V4
or 3a,

We also have similar observations in economic growth, innovation, and pace of life in cities.

West, G. B., Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: fractal geometry and allometric scaling of
organisms. science, 284(5420), 1677-1679.

= | Bettencourt, L. M., Lobo, J., Helbing, D., Kiihnert, C., & West, G. B. (2007). Growth, innovation, scaling, and the pace of
I s life in cities. Proceedings of the national academy of sciences, 104(17), 7301-7306. 20



= Theory: maximize metabolic capacity - transportation through space-filling fractal networks

of branching tubes

Plant

\
)

Parameters

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k = 0) and ending with the capil-
lary (k = N); and (D) parameters of
a typical tube at the kth level.

West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in
biology. Science, 276(5309), 122-126. 21



Table 1. Values of allometric exponents for variables of the mammalian

cardiovascular and respiratory systems predicted by the model compared  3); ND denotes that no data are available.

with empirical observations. Observed values of exponents are taken from (2,

Cardiovascular Respiratory
Exponent Exponent
Variable Variable
Predicted Observed Predicted Observed
Aorta radius r 3/8= 0.375 0.36 Tracheal radius 3/8F 0.375 0.39
Aorta pressure Ap, 0= 0.00 0.032 Interpleural pressure OF 0.00 0.004
Aorta blood velocity u, 0= 0.00 0.07 Air velocity in trachea OF 0.00 0.02
Blood volume V T+ 1.00 1.00 Lung volume 1= 1.00 1.05
Circulation time 1/4 # 0.25 0.25 Volume flow to lung 3/4F 0.75 0.80
Circulation distance / 1/4 + 0.25 ND Volume of alveolus V, 1/4F= 025 ND
Cardiac stroke volume 1+ 1.00 1.03 Tidal volume 1= 1.00 1.041
Cardiac frequency o -1/4 + —0.25 -0:25 Respiratory frequency —-1/4 = —-0.25 -0.26
Cardiac output £ 3/4 + 0.75 0.74 Power dissipated 3/4F 0.75 0.78
Number of capillaries N 3/4 + 0.75 ND Number of alveoli N, 34 0.75 ND
Service volume radius 112 £ 0.083 ND Radius of alveolus ry 112 = 0.083 0.13
Womersley number o 1/4 + 0.25 0.25 Area of alveolus A, 1/6 = 0.083 ND
Density of capillaries —-1/12 +# —0.083 —0.095 Area of lung A, 1112 0.92 0.95
O, affinity of blood P, -1/12 + —0.083 —0.089 O,, diffusing capacity 1= 1.00 0.99
Total resistance Z =3/4 ¥ —0.75 —-0.76 Total resistance -3/4 F -0.75 -0.70
Metabolic rate B 34+ 075 0.75 O, consumption rate 3/4= 0.75 0.76
- ) West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in
R JOHNS HOPKINS biology. Science, 276(5309), 122-126. 22



OXFORD

List of Other Metrics

Node Degree (in-degree; out-degree) N-cliques tworlss
Degree distribution N-clans

Betweenness centrality K-plexes :f’ . : NewN.:f;ﬁ
Eigenvector centrality K-cores , .

Page Rank (Google) Structural Equivalence

Constraint (Structure hole) Shortcut

Hubs and Authorities (HITS)
Clustering coefficient

Components For more information, refer to textbooks, Wikipedia or
Subgraphs python/R packages (e.g. NetworkX https://networkx.org/)

Newman, M. (2018). Networks. Oxford university press. 23
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Call back

= Logistic Regression (Feb 14) assume independence of errors, linearity in the
logit for continuous variables, absence of multicollinearity, and lack of strongly

influential outliers

Supervised learning

sports economy  world Loglstl'c Training: learn weights w and b
|:> Regression using stochastic gradient
= = = Classifier descent and cross-entropy loss.
world politics  politics
= e :D Inference Test: Given a test
= :> LOgIStI-C Sparts example x, compute p(y|x) using
Regression learned weights w and b, and return
— |:> Classifier :> olitics Whichever label (y = 1 ory = 0) is
— # higher probability
:,';-.‘ ! ' Stoltzfus, J. C. (2011). Logistic regression: a brief primer. Academic emergency medicine, 18(10), 1099-1104.

25



Network “regression”

Problem:

= Analogous to logistic regression: if we want to predict the probability that a pair of
nodes in a network will have a tie between them (0,1).

= Ties between nodes in real social networks are not independent.

Solution
= Exponential Random Graph Model (ERGM)

= Through simulation, ERGMs allow dyadic and higher-order dependencies to be
modeled. Then it can describe how interdependent structures shape a network.

oy
. |


https://eehh-stanford.github.io/SNA-workshop/ergm-intro.html

ERGM Model

= QObserve the distribution of structural features of interest in simulated networks

P(X)

SR S

Figure from: https://sonic.northwestem.edu/ 27


https://sonic.northwestern.edu/

ERGM Model

= Adding different
structural metrics as X into
a “‘regression”.

[ : H ; b
e See more network statistics:

Network Statistics: Undirected

Parameter statnet name Parameter statnet name
Edge edges > o Isolates isolates ~
2-Star kstar(2) < 3-Star kstar(3) <
Triangle triangle A K-Star kstar (k) <
L]
Network Statistics: Directed
Parameter statnet name Parameter statnet name
Arc edges *o————eo Reciprocity mutual [
2-In-Star istar(2) < 2-Out-Star ostar(2) <
Mixed-2-Star e .<
(two-path)
3-In-Star istar(3) é 3-Out-Star ostar(3) é
K-In-Star istar (k) < K-Out-Star ostar (k) é:

28


https://cran.r-project.org/web/packages/ergm/vignettes/ergm.pdf

ERGM Model

Let Y denote an 72 X 71 sociomatrix where yij = 1if individuals y’ij = %and J have a tie. Let X
denote a matrix of covariates, which includes structural measures of the network as well as nodal
and possibly edge-level attributes. A generic ERGM can be written as:

exp{0'g(y, X)}
K(6,Y)

Pyy(Y =y[X) =

where @ is a vector of coefficients, g(y, X) is a vector of sufficient statistics, YVis the space of
possible graphs, and 5(6’ y) is @ normalizing constant. That is, it's the numerator summed across

all possible graphs Y . For even moderate-sized graphs, &(07 y) can be enormous, so closed-form

solutions are unfeasible. The number of labeled, undirected graphs of 10 vertices is 2”'(n_1)/2, which
can get big fast. For example, for a network of 77 > 7, there are over two million undirected graphs,
which means that you would need to calculate the likelihood for each one of these in order to
compute K . This is generally not practical.

=3 | ’
B JOHMNS HOPKIMNS
1ﬁl J e i L

29


https://eehh-stanford.github.io/SNA-workshop/ergm-intro.html

ERGM Model

Some Definitions and Notation

e Yij denotes the 2J th dyad in graph Y. 1fYij = 1, then 4 and J are connected by an edge, if
Yij =0, they are not.

C . e
Yijis the status of all other pairs of vertices in ¥ other than (4,4)

+
Yijis the same network as Y except that ¥Yij = 1

Yij is the same network as Y except that ¥ij = O.

T +) _ ”
5(%‘]’) is the change statistic. 5(%]) o g(yzy) g(yw ) This is a measure of how the graph
statistic g(y) changes if the Jth vertex is toggled on or off.

The ergm equation can be re-written in terms of change statistics. The log-odds of a tie Yijis:

logit(Y,-j = llyfj) = er(yij)

[ o | i
B JOHMNS HOPKIMNS
1|I'l' J ST g

30


https://eehh-stanford.github.io/SNA-workshop/ergm-intro.html

g L |

Example of ERGM

= How reciprocal edges and number of edge influence guarantee network in
financial crisis and stimulus program?

Analytical ERGM coefficients

480 {— T T .
(1) ] I
" ‘oo I : o00e®®® L -107
JQC_; = .......‘.OQOi. ... :.......
‘O 470 1 %o ..'+ F-08
E ! () (14 =
[} ; . e o’ ! | -10.9 5
O 465 ® Reciprocal edge coefficient L4 ° 1 G
o ® Edge coefficient .0. ® I L
[ —— Bankruptcy of NCFC : oo, : L —11.0 %
% 4.60 1 = = Bankruptcy of LB 1 L ° I o
9] —— Start of the CESP 1 ° %o 1 v
T ass | == End of the CESP 1 * tou ) [ead a
©; 1 ° 1)
S : .® :u | -11.2 &
% 4.50 4 1 * 1 .0.
3 e0e® : o. : ... F-11.3
O a5 PYSL L .000*. ° - e,
0%s400® 1 1 *e
1 ‘ L | -11.4
200701 200711 200809 200907 201005 201103 201201
Fig. 4 Dynamic changes of coefficients in ERGM. Source data are provided as a Source Data file.
= T Wang, Y., Zzhang, Q., & Yang, X. (2020). Evolution of the Chinese guarantee network under financial crisis and stimulus

¥ s program. Nature Communications, 11(1), 2693. 31



Extended ERGM family and other
Relevant Inference models

= Social selection: predict ties
= Social influence: predict attributes of nodes

Choosing the Right Network Model Framework

DV Unit  cross-sectional Longitudinal Events
Social QAP/ERGMs STERGMs

Selection ? RSIEiNA(SAOM) i

Social ALAAM RSIENA(SAOM REM

AR DR Q:ZE?S‘.

W JOHNS 1 " Example from: https://sonic.northwestem.edu/

32


https://sonic.northwestern.edu/

Problem of ERGM family

—

= Not practical for a large graph (typically within 3k-5k nodes)

= One solution is network sampling, sample a small graph from the large graph
(another solution is Graph Neural Network)

Static graph patterns Temporal graph patterns
in-deg | out-deg | wcc sce hops [ sng-val | sng-vec | clust diam cc-sz | sng-val || clust AVG

RN 0034 | 0.14> | 0814 [0.193 | 0.23L [ 0.079 0.112 | 0327 || 0.074 | 0.570 | 0.263 || 0.371 [[ 0.272
RPN || 0.062 | 0.097 | 0.792 | 0.194 | 0.200 | 0.048 | 0.081 | 0.243 || 0.051 | 0.475 | 0.162 | 0.249 || 0.221
RDN || 0.110 | 0.128 | 0.818 | 0.193 | 0.238 | 0.041 0.048 | 0.256 || 0.052 | 0.440 | 0.097 || 0.242 || 0.222

RE 0.216 0.305 [ 0.367 | 0.206 | 0.509 | 0.169 0.192 0.525 || 0.164 | 0.659 0.355 0.729 || 0.366
RNE || 0.277 0.404 0.390 | 0.224 | 0.702 | 0.255 0.273 0.709 | 0.370 | 0.771 0.215 0.733 || 0.444
HYB || 0.273 0.394 0.386 | 0.224 | 0.683 | 0.240 0.251 0.670 | 0.331 | 0.748 0.256 0.765 | 0.435

g L |

RNN |[ 0.179 0.014 0.581 [ 0.206 | 0.252 0.060 0.255 0.398 0.058 | 0.463 0.200 0.433 0.258
RJ 0.132 0.151 0.771 | 0.215 | 0.264 0.076 0.143 | 0.235 || 0.122 | 0.492 0.161 0.214 || 0.248
RW 0.082 0.131 0.685 | 0.194 [ 0.243 0.049 0.033 | 0.243 ([ 0.036 | 0.423 | 0.086 0.224 || 0.202
FF 0.082 0.105 0.664 | 0.194 | 0.203 | 0.038 0.092 | 0.244 | 0.053 | 0.434 0.140 0.211 || 0.205

Table 1: Scale-down sampling criteria. On average RW and FF perform best.

2 100 H . Leskovec, J., & Faloutsos, C. (2006, August). Sampling from large graphs. In Proceedings of the 12th ACM SIGKDD
" international conference on Knowledge discovery and data mining (pp. 631-636). 33



Call back

= Causal inference
= How to conduct causal inference in network analysis?

How can we measure ATE without this
problem?

= Randomized control trial (RCT)

= More realistic scenario:
o We'll probably study effects of medicine on someone who is sick

o If we survey people, there still might be differences: lower income person may
not be able to afford medicine and may also have worse nutrition that leads to

more severe illness: income is a confounder (X)

= Instead of surveying people, we take a group of people and randomly assign them to
“treatment” or “control” group

L

oy Jonns H : Stoltzfus, J. C. (2011). Logistic regression: a brief primer. Academic emergency medicine, 18(10), 1099-1104.
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Example 1: Simulation + Matching

= Remove matched nodes and see

what happens

Malfeasance and the Foundations for Global
Trade: The Structure of English Trade in

the East Indies, 1601-1833"

Emily Erikson
University of Massachusetts, Amherst

Peter Bearman
Columbia University

Total Trade ?\Llwurk Malclu.d Set Removed Private Trade Removed
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F1G. 8.—Simulations of data presented in fig. 6

primer. Academic emergency medicine, 18(10), 1099-1104.

Panel E: 1760

F16. 4—Network visualizations of the EIC’s Eastern trade

Erikson, E., & Bearman, P. (2006). Malfeasance and the foundations for global trade: The structure of English trade in the
OHNS FIOPKINS East Indies, 1601-1833. American Journal of Sociology, 112(1), 195-230., J. C. (2011). Logistic regression: a brief 35



Example 2: Experiment

= Recruit people and allocate them into
different networks.

Experimental evidence for tipping points in social
convention

Authors Info & Affiliations

SCIENCE - 8Jun2018 - Vol 360,Is

& 7545 995 A O

"L convention. Science, 360(6393), 1116-1119.

1.00
0.75
0.50

0.254
0.00+

1.004 1.004
0.754 0.75
0.504 0.50
0.254 0.25
0.004 V/\'\M 0.00+

1.00
0.75
0.50
0.25
0.00+

1.00
0.75
0.50

0.254
0.00+

Trial 1: 4120 (20%)

Trial 2: 5/20 (25%)

st N NAA e

1.00
0.75

0.50
0.25

0.00+

d

5 15 25 35
Rounds Played

Trial 3: 4121 (19%)

5 15 25 35
Rounds Played

Trial 4: 5118 (28%)

5 15 25 35
Rounds Played
Trial 5: 6/29 (21%)

25

= |
o

5
Rounds Played
Trial 6: 8/26 (31%)

M

1.001
0.75

0.50
0.25

0.00+

A

5 15 25 35 45
Rounds Played
Trial 7: 5/26 (19%)

5 15 25 35
Rounds Played

Trial 8: 8/29 (28%)

WMW-\._.-\_.'J-

1.00
0.75

0.50
0.25

0.00+

i

5 15 25 35 45 55
Rounds Played

5 15 25 35 45 55
Rounds Played
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Call back: Large Graph Issue for ERGM

= Solution 1: Network sampling.

= Solution 2: Transform graph information to other data structures (e.g., vector -
node embedding).

= Solution 3: Analyzing the graph at the local neural level and then aggregating the
neurons together (e.g., Graph Neural Network).

= These 3 solutions are actually intertwined in practice:

You can use network sampling methods (e.g., random walk) to calculate node
embeddings;

You can also use node embedding results as input for Graph Neural Networks (GNN).
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Node Embedding

= Logic of Node Embedding

1. Define a function that maps node u, v to vectors zu, zv
2. Define a node similarity function for u, v

3. Optimize parameters so that: Embeddlﬂg Nodes
Goal: similarit , ~ UT o
similarity(u,v) = Zﬁzu oal: similarity(u,v) ~ z, z
[ Need to define! |
.\ "ENC(u)
\<\?/u_\venc el 1 .
7 ~ S
Input network d-dimensional

embedding space

E-N
|

3 1OH lllustration graph from: hittps://cs.stanford.edu/people/jure/teaching.html
ol
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Example: similarity based on random walks

= Given a random node u, predict its neighbor Nr(u), equivalently minimizing L.
= Intuition: Optimize embedding zu to max the likelihood of random walk co-occurrences.

Given a graph and a starting
Step 2 point, we select a neighbor of

Step 1 : .
\ it at random, and move to this

o neighbor; then we select a
° neighbor of this point at

random, and move to it, etc.

1. Simulate many short random walks starting
from each node using a strategy R

2. For each node u, get N4(u) as a sequence of
nodes visited by random walks starting at u

", 8 , learn its embedding by
predicting which nodes are in N 4(u):

L= Y —log(P(v|zy))

\ The (random) sequence of uevV
Q points visited this way is a = UENR (u)
rendam walk on Soe graph. Can efficiently approximate using negative sampling
W oS ' Example from: https:/cs.stanford.edu/peoplejure/teaching.html
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Example: similarity based on random walks

= Given a random node u, predict its neighbor Nr(u), equivalently minimizing L.
= Intuition: Optimize embedding zu to max the likelihood of random walk co-occurrences.

= Use softmax to parameterize P(v]|zu) (make v to be most similar to u).

[ exp(z, z,) )
R e
u€EV weNg(u) \2nev €XP(2y Zn)
A

predicted probability of u
and v co-occuring on
random walk, i.e., use

softmax to parameterize

P(v|zy,)

Random walk embeddings = z,, minimizing L

B ] H Example from: https://cs.stanford .edu/peaple/jure/teaching.html 41
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Recall negative sampling in word2vec

= Calculating L is expensive: pick random negative samples to normalize
= Negative sampling (word2vec)

[ exp(z, z,) )
L= Z E — log
S v exp(z) z,) > - g
w€V vENR (u) N ~meV u SR Skip-gram: Negative sampling
\ Encourage center word
predicted probability of u and context word to

and v co—occuring on . / have similar vectors
exp(Up V;)

random walk, i.e., use e
softmax to parameterize i=1€xp(y; vc)

P(v|z,) Encourage center word
and all other words to
have different vectors

Random walk embeddings = z,, minimizing L

B JouNs H + Example from: https://cs.stanford.edu/people/fjure/teaching.htm| 42
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Recall negative sampling in word2vec

= Calculating L is expensive: pick random negative samples to normalize

= Negative sampling (word2vec): Sample k negative nodes each with prob.
proportional to its degree (k=5~20)

= Gradient Descent to minimize L

Skip-gram: Negative sampling

exp(ugve)

Xi_1exp(ui v;)

Solution: Negative sampling (Mikolov et al., 2013)

exp(z] 2.)
log T

Encourage center word
and context word to 10g Z Zv E 10g Z Zn n; ~ PV
have similar vectors /

random distribution

sigmoid function
over all nodes

Encourage center word

d all oth ds t - - - -
syl ooy .e., instead of normalizing w.r.t. all nodes, just
normalize against k random negative samples

B JouNs H + Example from: https://cs.stanford.edu/people/fjure/teaching.htm| 43
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Call back Neural Network

I
= Can we directly apply neural network to graph, taking adjacency matrix and network

metrics as input?

0‘9 : : :) :» : ‘1) (1) :
® c 100 1 0 0 1 -
AN Two-layer Neural Network with scalar
El o1 010 10 output
= Issues with naive neural network Output layer y =0(z)
(o node) U 7 = Uh
Node order; Graph size change...
- Feature by h=oc(Wx+b)
ngmee rmg Need a non-linear
b function, e.g. sigmoid,
Structured RelU, tanh
Features fopiblagen
(vector)

&7 JoHNS HOPKINS
U s 44



Graph Neural Network

= Logic of GNN
1) Network neighborhood defines a computation graph
2) Generate node embeddings/link messages based on local network neighborhoods

3) Aggregate information across layers
= Basic approach: Average neighbor messages

4) Train the neural network and apply a neural network

Initial O-th layer embeddings
. are equal to node features

average messages ® [

=1
TARGET NODE from ne|ghbor8 . 2 “
hk-—l
2 h* =@ | W, S B hE |, vEe{l,.. K
\ SRRCING ” o e (e )
................. u€N (v)
® — i€ \Average of neighbor’s
. Z'U hqv . .
! previous layer embeddings
@ Non-linearity
INPUT GRAPH ' A (e.g., RelLU)

W 7 marmia " Example from: 45
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Graph Neural Network Training

Supervised Training Unsupervised Training

Directly train the model for a supervised task = Train in an unsupervised manner:
(e.g., node classification) = Use only the graph structure
= “Similar” nodes have similar embeddings

3 Safe or toxic
Safe or toxic

cin? G = Unsupervised loss function can be anything
¢ from the last section, e.g., a loss based on
= Random walks (node2vec, DeepWalk, struc2vec)
@ i e = Graph factorization
3 |} ‘& = Node proximity in the graph
® $55% °® E.g., a drug-drug

interaction network

B 1o

Q7 O TIOPKINS Example from: https://cs.stanford .edu/people/jure/teaching.htm 46
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Example 1: Predict Twitter (X) Interaction

= Dynamic GNN

0 | &) | z(t1) (1 2)[t1)
o loss
emb at) [ ak) | (@ 3”“
- Edge
Node Embeddings Probablties

TEMPORAL GRAPH NETWORKS FOR DEEP LEARNING

ON DYNAMIC GRAPHS B g

Emanuele Rossi® Ben Chamberlain Fabrizio Frasca

Twitter Twitter Twitter

Davide Eynard Federico Monti Michael Bronstein

Twitter Twitter Twitter Messages Aggregated (Updated)

Messages Memory
Figure 1: Computations performed by TGN on a batch of time-stamped interactions. Top: embeddings
are produced by the embedding module using the temporal graph and the node’s memory (1). The
embeddings are then used to predict the batch interactions and compute the loss (2, 3). Bottom: these
same interactions are used to update the memory (4, 5, 6). This is a simplified flow of operations
which would prevent the training of all the modules in the bottom as they would not receiving a
gradient. Section 3.2 explains how to change the flow of operations to solve this problem and figure 2
shows the complete diagram.
== . Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein, M. (2020). Temporal graph networks for deep

<" 7000 leaming on dynamic graphs. arXiv preprint arXiv:2006.10637. 47



Example 2: GraphSAGE

= Heterogeneous Nodes and Edges

. S, 4
Inductive Representation Learning on Large Graphs )
William L. Hamilton* Rex Ying* Jure Leskovec
wleif@stanford.edu rexying@stanford.edu Jjure@cs.stanford.edu
Department of Computer Science 1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
Stanford University from neighbors using aggregated information

&
=)

Stanford, CA, 94305
Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural
information processing systems, 30.. 48



Issues with GNN

= Interpretability (Ongoing research)
= Lost global information (Complex system studies are good at dealing with global info)

Graph Neural Netwok
Explanations

Instance-level Model-level
Explanations Explanations
CGradients/Features) C Perturbations ) C Decomposition ) ( Surrogate ) ‘ Generation ’

GNNExplainer
SA PGExplainer
Guided BP ZORRO AR Craplifine "
CAM GraphMask E’:m“‘:;:” PGM“"E" : XCHK
Grad-CAM Causal Screening # HEELIE
SubgraphX

Fig. 1. An overview of our proposed taxonomy. We categorize existing GNN explanation approaches into two branches: instance-level methods
and model-level methods. For the instance-level methods, the gradients/features-based methods include SA [54], Guided BP [54], CAM [55], and
Grad-CAM [55]; the perturbation-based methods are GNNExplainer [46], PGExplainer [47], ZORRO [56], GraphMask [57], Causal Screening [58],
and SubgraphX [48]; the decomposition methods contains LRP [54], [59], Excitation BP [55] and GNN-LRP [60]; the surrogate methods include
GraphLime [61], RelEx [62], and PGM-Explainer [63]. For the model-level methods, the only existing approach is XGNN [45].

S0 JoH~Ns H < Yuan, H., Yu, H., Gui, S., & Ji, S. (2022). Explainability in graph neural networks: A taxonomic survey. IEEE transactions 49
o on pattern analysis and machine intelligence, 45(5), 5782-5799.
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Interpretability

= Why care?

a
Edge feature representation Data Used Node feature representation
unweighted
HiCraw H-CICE
N
i [ Node2vec [ svD [ UE ]
[1somap [ TSNE | NwF |
Hi-C latent features
+
T 1T .
Hi-C only HC+PPI_ Hi-C/PPI combine
P
o,
00
Graph Attention Networks Graph Attention Networks
b c
Edge feature representation Node feature representation Node feature representation
AUPRC AUPRC with SVD AUPRC
09114 ICE-1 0.9020
[HiC only IcE-2 09109
lice-5 09140
08276 ICE-10 09133
|Hi-C+PPI 08811 RAW-1 08965
03789 RAW-2 09115
0.9004 RAW-5 09029
[Hi-C/PPI combine 0.8908 RAW-10 09042
09028
PPt only 0.8964

Fig. 3 Performance evaluation of multi-omics data integration approaches.

JOHNS HOPEINS

Right: Hi-C data were as node features. Raw and

Eight AML patients
Data from Jie Xu et al., Nature, 2022

ATR  MTOR PABPCl RHOA
CUL3 MYH9 NCOR2  SMARCA4

[___ATAC POU2FI MAX PCMI PPP2RIA SMARCEI!
CTCF
{__hsKoras. | r
( Hi-C
Y HMGAI  TP63 SMAD2
CGMega 3:;{"""’“ ESRRA ~ NKX2-1 SMAD3
- genes FOXOI _ RELA _ NFATC2
®Common @ Patient-specific
c 597 Known CGs - 175 bidlogy processes
ol o — + insulin receptor signaling pathway
v ® + leukocyte migration
Gene 5 o * T cell receptor signaling pathway
modules 3 + platelet formation
oo - response to inter eukin-1
d « B cell receplor signaling pathway
. ation of cell shape
Only in 1 sample 396 candidate CGs mwla —
0 « leu e
o2 +—» Co-occurrence in multiple
GRB2 AML patients * platelet aggragation
« cell migration involved in sprouting anglogenesis
ABLI * positive regulation of osteoblast differentiabion
FIN Die * hematoposetic progenitor cell differentiation
SPI * platelet-derived growth factor receptor signaling pathway
+ callular response to platelet-derived growth factor stmulus
DLX4 gene module - Other 77 biclogy processes
GO term P-value < 1e-5
e Two-hop KLF4 f
wo-hop gene module Number of AML samples

Q
Patient 168

[ A\
°

Patient 027 /270  Patients 018/472/546 /629 /773

Fig. 6 | Gene modules in AML patients. a Application of CGMega on AML. Multi-

Neighbor-cancer pair 57 a8 4 8310
Cancer gene _ Neighbor gene ___ ey

MRGPRX3 Corf52
cps2 AQP6 2
TMEM37. MPP3 »
F3 F10 &
PTHLH KLK3 %
CCNY CDK14 -]
DDX10 BYSL :
TBX21 STAT4 %
cDs8 cp2 a
ROS1 PTPN1 %
cD69 CLDN1 bt
CKS18 MED12L %
MPO EYA1
CDK5 CHN1
IFNG IFNGR1

genes, while yellow dots indicate candidate AML genes. e lllustration of KLF4 gene

Li, H., Han, Z., Sun, Y., Wang, F., Hu, P., Gao, Y., ... & Bo, X. (2024). CGMega: explainable graph neural network
framework with attention mechanisms for cancer gene module dissection. Nature Communications, 15(1), 5997.
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Interpretability

= How? E.g. GNNExplainer

= Learning masks over the input graph’s edges and node features (it optimizes an
objective that maximizes the association between the prediction and the
selected subgraph and features).

Figure 5: Visualization of features that are important

A Graphoclassif'lwiziir: B No?(e.°qlassificiii:pnmanon for a GNN’s prediction. A. Shown is a representative

—_ (j}'ﬁ}zﬁo;i‘;h w ol it .,;;; ;L‘L‘L”ﬁﬁ"oae molecular graph from MUTAG dataset (top). Impor-
GNN BT e i g8, L tance of the associated graph features is visualized
* A with a heatmap (bottom). In contrast with baselines,

p,e‘jﬂ?j,'i Molecule's mutagenicity Node's structural role GNNEXPLAINER correctly identifies features that are

ee oo important for predicting the molecule’s mutagenicity,
Ground Truth COCIHN FBrSP I NaK LiCa R - ’

Featre mportance LI | (] i.e. C, O, H, and N atoms. B. Shown is a computation

owepaner ] 1 graph of a red node from BA-COMMUNITY dataset

(top). Again, GNNEXPLAINER successfully identifies

coo [ HENENNN DI N the node feature that is important for predicting the

Att Not applicable Not applicable structural role of the node but baseline methods fail.

S0 JoH~Ns H - Ying, Z., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). Gnnexplainer: Generating explanations for graph 51
. neural networks. Advances in neural information processing systems, 32.



Examples of complex system network
studies

= Watts, D. J.,, & Strogatz, S. H. (1998). Collective dynamics of ‘small-world'networks.
nature, 393(6684), 440-442.

= Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks.
science, 286(5439), 509-512.

= Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G., & Cannistraci, C. V. (2017).
Machine learning meets complex networks via coalescent embedding in the
hyperbolic space. Nature communications, 8(1), 1615.

= Wang, D., & Barabasi, A. L. (2021). The science of science. Cambridge University
Press.
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Recommended readings

= Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 855-864).

= Xu, K., Hu, W,, Leskovegc, J., & Jegelka, S. (2018). How powerful are graph neural
networks?. arXiv preprint arXiv:1810.00826.

= Yuan, H., Yu, H., Gui, S., & Ji, S. (2022). Explainability in graph neural networks: A
taxonomic survey. IEEE transactions on pattern analysis and machine intelligence,
45(5), 5782-5799.
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