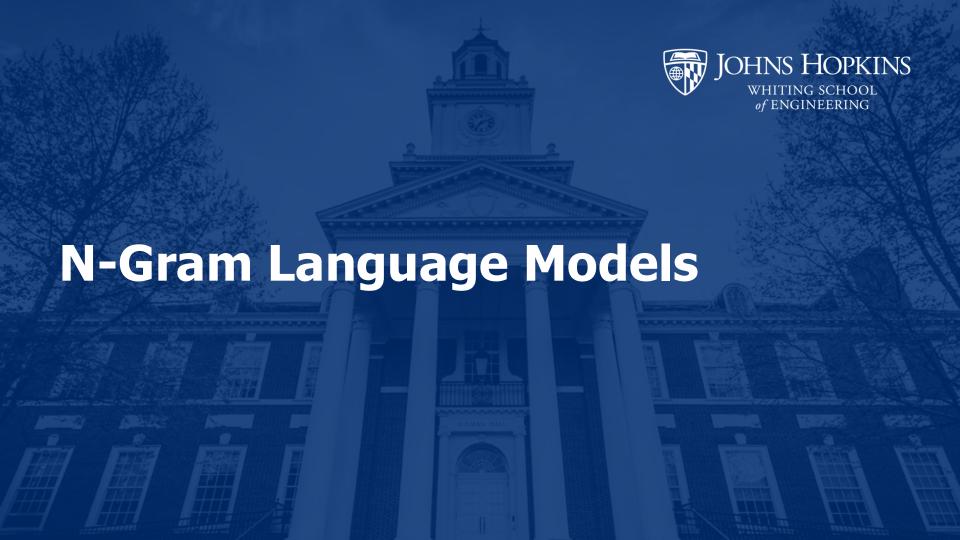


Overview

- N-gram language models
- Evaluation
- Neural language models
- Pre-trained language models



Probabilistic Language Models

- Goal: Assign a probability to a sentence
- Why?
 - Machine Translation
 - P(high winds tonight) > P(large winds tonight)
 - Spell Correction
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
 - + many other tasks

Probabilistic Language Model

- Goal: compute the probability of a sentence or sequence of words:
 - $P(W) = P(w_1, w_2, w_3, w_4, w_5 \dots w_n)$
- Related task: probability of an upcoming word:
 - $\circ P(w_5|w_1,w_2,w_3,w_4)$
- A model that computes either of these:
 - o P(W) or $P(w_n|w_1, w_2, w_3, ..., w_{n-1})$ is called a language model.

How to compute P(W)

- How to compute this joint probability:
 - P(its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

How to compute P(W)

- Recall the definition of conditional probabilities
 - $\circ P(B|A) = \frac{P(A,B)}{P(A)}$
 - Then we can rewrite: P(A,B) = P(A)P(B|A)
- The Chain Rule in General

$$P(x_1, x_2, x_3, ..., x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) ... P(x_n|x_1 ... x_{n-1})$$

The Chain Rule applied to compute joint probability of words in sentence

$$P(w_1, w_2, ..., w_n) = \prod P(w_i | w_1 w_2 ... w_{i-1})$$

- P("its water is so transparent") = P(its) \times P(water|its) \times P(is|its water) \times P(so|its water is) \times P(transparent|its water is so)
- How do we estimate these probabilities?

How to estimate these probabilities?

- Try 1: count and divide?
 - $OP(transparent | its water is so) = \frac{Count(its water is so transparent)}{Count(its water is so)}$
- Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

- Simplifying assumption:
 - o $P(transparent | its water is so) \approx P(transparent | its water)$
- More generally:
 - $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i | w_{i-k} ... w_{i-1})$
- Unigram model: $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i)$
- Bigram model: $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i | w_{i-1})$
- Trigram, 4-gram, 5-gram etc.
 - In general, this is insufficient since language has long-term dependencies, but we can often get away with it

Estimating bi-gram probabilities

- Bigram model: $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i | w_{i-1})$
- Maximum likelihood estimate

$$OP(w_i|w_{i-1}) = \frac{count(w_{i-1},w_i)}{count(w_{i-1})}$$

<s> I do not like green eggs and ham </s>

$$P(I | ~~) = \frac{2}{3} = .67~~$$

$$P(| Sam) = \frac{1}{2} = 0.5$$
 $P(Sam | am) = \frac{1}{2} = .5$ $P(do | I) = \frac{1}{3} = .33$

$$P(\mathtt{Sam} \mid <\mathtt{s}>) = \frac{1}{3} = .33$$

$$P(\mathtt{Sam} \mid \mathtt{am}) = \frac{1}{2} = .5$$

$$P(\text{am} \mid I) = \frac{2}{3} = .67$$

$$P(do | I) = \frac{1}{3} = .33$$

Practical considerations

- Typically put everything into log space (avoid underflow and adding is faster than multiplying)
- What do we do about rare words? We might have word combinations we never saw in the training set (that we used to estimate probabilities)
 - Smoothing, backoff, interpolation
- There can be LOTS of n-grams
 - Pruning (only store probabilities for frequent ones)
 - Efficient data structures

Extrinsic (in-vivo) Evaluation

- To compare models A and B:
 - Put each model in a real task: Machine Translation, speech recognition, etc.
 - Run the task, get a score for A and for B
 - How many words translated correctly
 - How many words transcribed correctly
 - Compare accuracy for A and B
- Disadvantages:
 - Expensive, time-consuming
 - Doesn't always generalize to other applications

Intrinsic (in-vitro) evaluation

- Perplexity
 - Directly measures language model performance at predicting words
 - Single general metric for language models
 - Doesn't necessarily correspond with real application performance
 - Useful for large language models (LLMs) as well as n-grams
- Data setup:
 - Train model (e.g. estimate probabilities) on training set
 - Compute perplexity on held-out test set

Perplexity: Intuition

- A good LM is one that assigns a higher probability to the next word that actually occurs
- "Its water is so _____"
 - Model A: transparent: 0.3, blue: 0.3, orange: 0.01, red: 0.02
 - Model B: transparent: 0.01, blue: 0.01, orange: 0.01, red: 0.9
- Generalize to all words: best LM assigns high probability to the entire test set
- When comparing two LMs, A and B
 - We compute P_A(test set) and P_B(test set)
 - The better LM will give a higher probability to (=be less surprised by) the test set than the other LM

Perplexity

- Probability depends on size of test set
 - Probability gets smaller the longer the text
 - o Better: a metric that is **per-word**, normalized by length
- Perplexity is the inverse probability of the test set, normalized by the number of words

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

Perplexity

 Perplexity is the inverse probability of the test set, normalized by the number of words

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

(The inverse comes from the original definition of perplexity from cross-entropy rate in information theory)

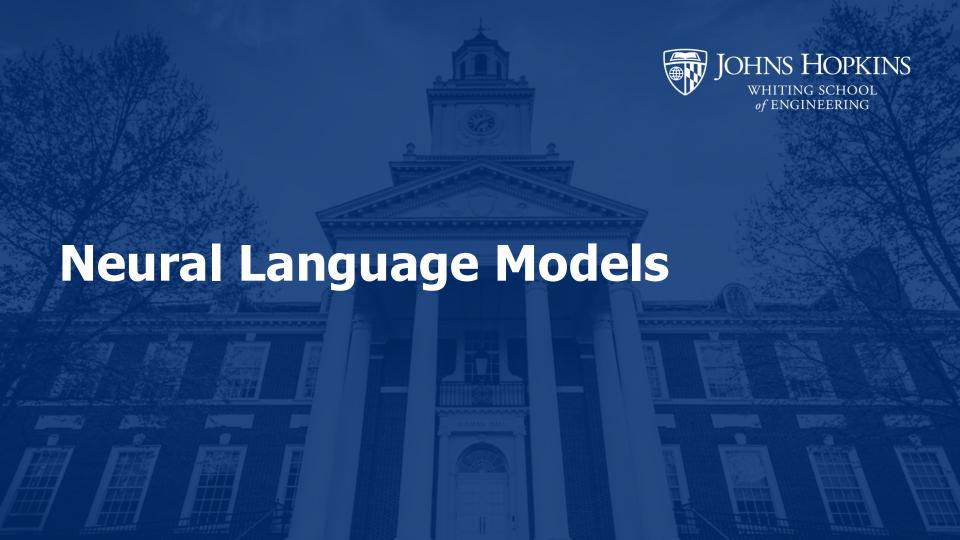
Probability range is [0,1], perplexity range is $[1,\infty]$

Minimizing perplexity is the same as maximizing probability

Perplexity

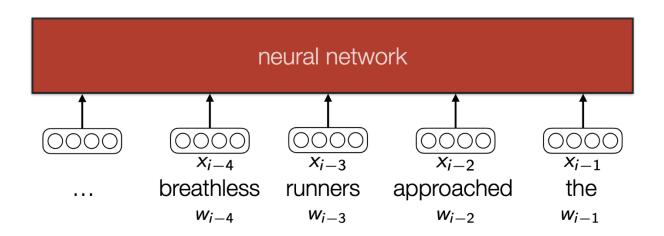
Perplexity for a bigram model

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$



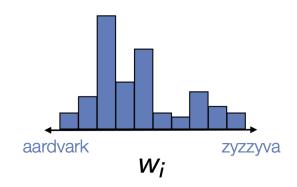
Neural Language Model

- Don't count, predict
- Input: word embeddings $[x_1, x_2, ... x_n]$

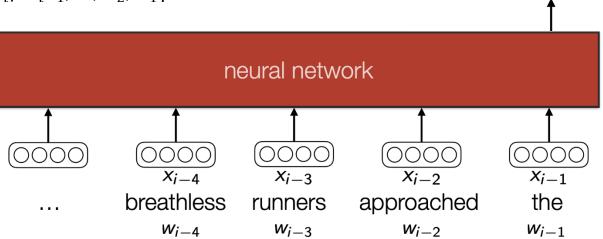


Neural Language Model

- Don't count, predict
- Input: word embeddings $[x_1, x_2, ... x_n]$
- Output: $P(w_i, w_{i-1}, ..., w_2, w_1]$



softmax(

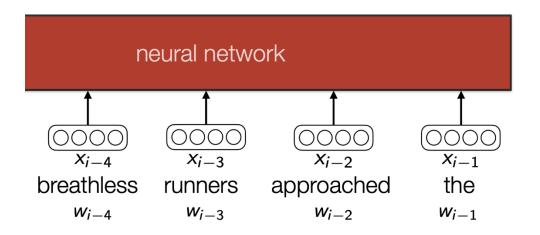


We can't handle variable sized inputs or very long sequences

W;

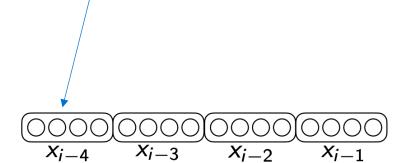
Fix size of previous context (e.g. k=4)

 $softmax(\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc)$



Dimensionality

We can start with pretrained embeddings like word2vec or train the embeddings along with the model



4d_{word embeddings}

Concatenate k word embeddings: $\mathbf{x} = [x_{i-4}; x_{i-3}; x_{i-2}; x_{i-1}]$

breathless

 W_{i-4}

runners

 W_{i-3}

approached w_{i-2}

the

 w_{i-1}

Dimensionality

Hidden layer $f(\theta^{x \to z} \mathbf{x})$

 \mathbf{d}_{7}

Concatenate k word embeddings: **x** =

 $[x_{i-4}; x_{i-3}; x_{i-2}; x_{i-1}]$

 X_{i-3}

 $d_7 \times 4d_{word\ embeddings}$

4d_{word embeddings}

breathless

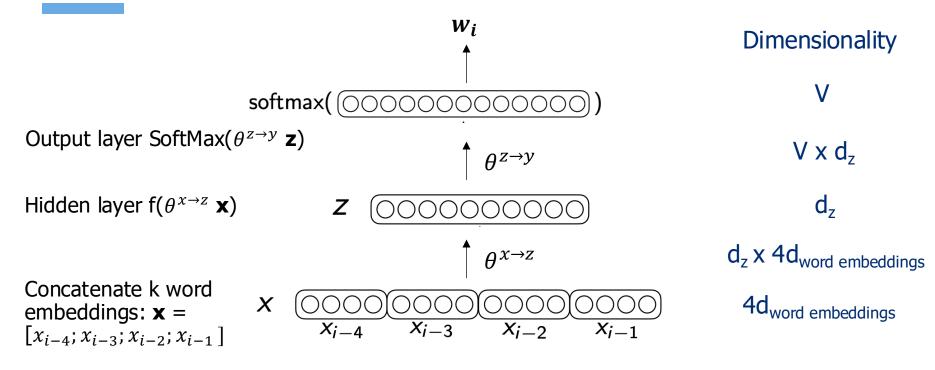
 W_{i-4}

runners

 W_{i-3}

approached W_{i-2}

the W_{i-1}



breathless w_{i-4}

runners w_{i-3}

approached w_{i-2}

the

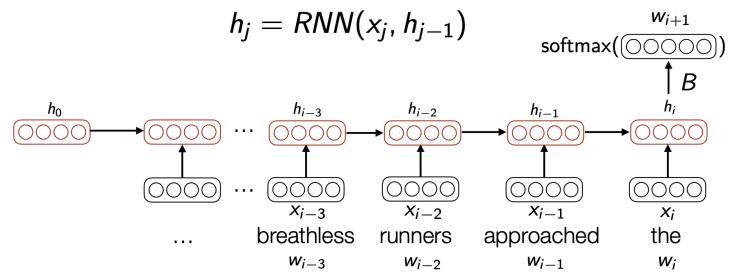
 w_{i-1}

Comparison with n-gram language model

- Improvements:
 - Model size: O(V) instead of O(Vⁿ)
 - Lack of sparsity
 - Sharing of representations across words
- Remaining challenges:
 - We still need to truncate context; model size grows linearly with context size

Solutions: Recurrent neural network

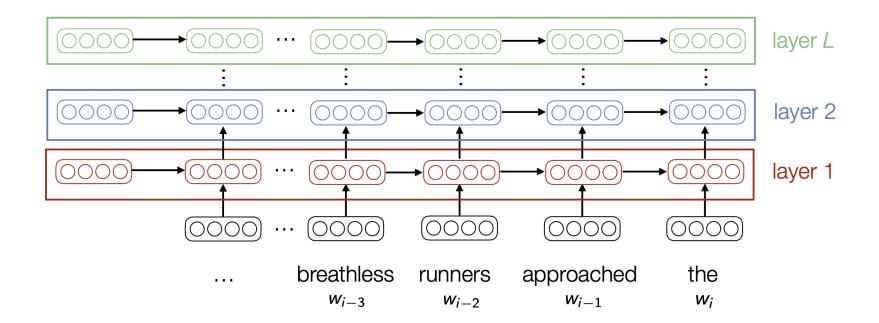
- Maintain a context vector, h. At each timestep (w_i), compose the context with the
- current word x_i to create a new context for the next timestep:



Training tricks

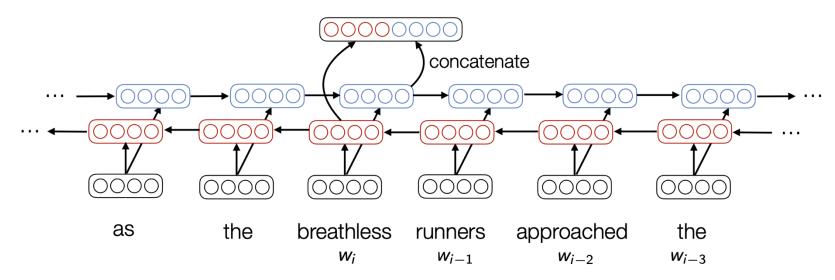
- Same problem with word embeddings, softmax over the vocabulary is expensive → hierarchical softmax
- In theory, we can propagate information over arbitrarily long context → in practice gradient can vanish or explode → gradient clipping, gating mechanisms
- Overfitting → dropout and regularization
- Other architectures:
 - Long short term memory (LSTM)

Stacking RNNs



Bidirectional RNNs

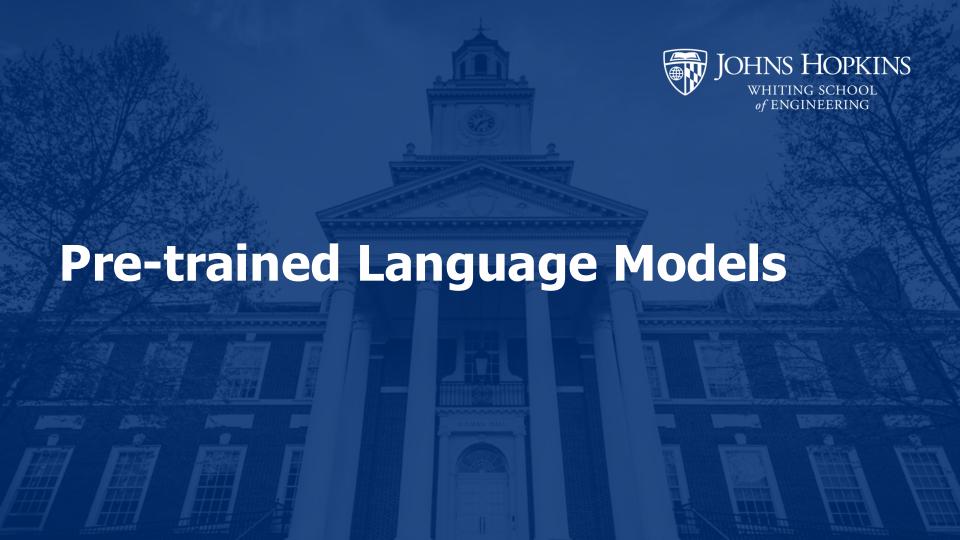
- In language it's often useful to model past and future context
- We can run an RNN in the opposite direction (reverse reading order)
- Combining forwards and backwards directions works best



Quiz

- 1. Which of the following methods might be a reasonable way to handle out-of-vocabulary words in a neural language model?
 - A. Replace all out-of-vocabulary words with a special token that has its own word embedding
 - B. Use sub-word embeddings, where you can break unknown words into character-level representations if needed
 - C. Using additive noise to smooth embeddings for unseen words
 - D. A and B
 - E. A and C

- 2. In what circumstances would you guess that a 3-gram language model would perform better than a 4-gram language model?
 - A. If your data has complex sentence structures that require modeling long-term dependencies
 - B. If your data is likely to frequently recurring bi-grams like "New York"
 - C. If your training data is small or from a different domain than your test data
 - D. A 4-gram model will always perform better. It will just require more compute / space for storing counts



Recall: Word Embeddings

- Key idea: pre-train word embeddings with a self-supervised objective (e.g. CBOW or skip-gram in word2vec)
- Incorporate pre-trained word embeddings into task-specific models
- Problem:
 - Single embedding representation for each word

Recall: Word Embeddings

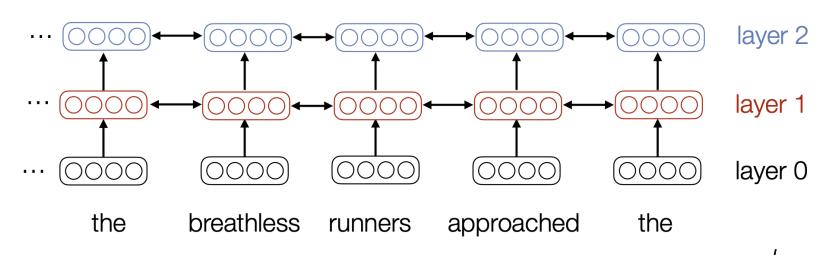
- "the new-look play area is due to be completed by early spring 2020"
- "gerrymandered congressional districts favor representatives who play to the party base"
- "the freshman then completed the three-point play for a 66-63 lead"
- Multiple senses get entangled
- Nearest neighbors:
 - playing played Play
 - o game plays football
 - games player multiplayer

Contextualized Representations

- Preferred approach: contextualized representations where the embedding changes with context
- [But still want to leverage self-supervised training on large data]
- ELMo ("Embeddings from Language Model")
 - Use hidden representation from language model
 - (keep middle layers instead of only the embedding layer)

ELMo: Deep contextualized word embeddings

Stacked bi-directional LSTM



ELMo: Deep contextualized word embeddings

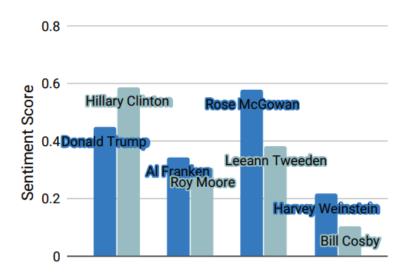
 Adding ELMo to existing state-of-the-art models provides significant improvement on essentially all NLP tasks.

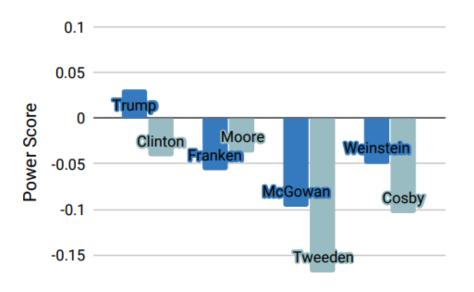
	TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
question answering	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
natural language inference	SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
semantic role labeling	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
coreference	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
named entity recognition	NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
sentiment analysis	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

How is ELMo useful for social text processing?

- Higher-performance for supervised learning
 - [Mostly eclipsed by future models]
- Adding context to lexicons:
 - Recall connotation frames for power, agency, and sentiment:
 - "The hero deserves appellation"
 - "The boy deserves punishment"
- Broad approach:
 - Take contextualized embeddings, average them, train a model to predict lexicon score from averaged embeddings
 - Use model to predict lexicon scores in context

Contextual Affective Analysis: A Case Study of People Portrayals in Online #MeToo Stories





How is ELMo useful for social text processing?

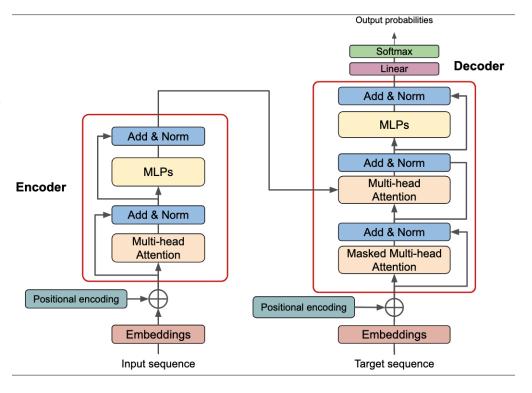
- Higher-performance for supervised learning
 - [Mostly eclipsed by future models]
- Adding context to lexicons:
 - "The hero deserves appellation"
 - "The boy deserves punishment"
- Word embeddings analyses?

ELMo → **BERT**

- Key differences:
 - BiLSTM -> Transformer
 - Treat layers as static embeddings → keep entire model and update it during taskspecific training
 - Next token prediction → Masked Language Modeling training objective

The Transformer

- Stacks of transformer blocks, each of which is a multilayer network that maps sequences of input vectors (x₁,..., x_n) to sequences of output vectors (z₁,..., z_n) of the same length
- Blocks are made by combining simple linear layers, feedforward networks, and self-attention layers (the key innovation of transformers)



Recap

- N-gram language models
- Evaluation
- Neural language models
- Pre-trained language models (ELMo→BERT)

Next class:

Masked Language Model use cases in computational social science

Please fill out mid-semester course survey on Piazza!

Acknowledgements

Slide thanks to Jurafsky&Martin and Strubell&Tsvetkov

