
Word Embeddings
1/31/23

2

Motivation

§ Core question in understanding cultural and language evolution: how do words
change meaning over time?

Hamilton, William L., Jure Leskovec, and Dan Jurafsky. "Diachronic Word Embeddings Reveal Statistical Laws of
Semantic Change." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2016.

How can we represent
meaning of a word?

3

Motivation

§ Can we use language analysis to identify and measure stereotypes?

§ Example from last week:
o Using PMI scores, Wikipedia articles about women tend to talk personal life

more
o Might we expect words like “family”, and “marriage” to be women-associated?

How can we measure “associations” between words?

Wagner, Claudia, et al. "It's a man's Wikipedia? Assessing gender inequality in an online encyclopedia." Proceedings of
the international AAAI conference on web and social media. Vol. 9. No. 1. 2015.

4

How might we represent words?

“Lexical Semantics”
§ Dictionary definition
§ Lemma and word forms
§ Senses

5

How might we represent words?

“Lexical Semantics”
§ Dictionary definition
§ Lemma and word forms
§ Senses

A sense or “concept” is the meaning component of a word.

6

How might we represent words?

“Lexical Semantics”
§ Dictionary definition
§ Lemma and word forms
§ Senses
§ Relationships between words or senses
§ Taxonomic relationships
§ Word similarity, word relatedness

7

Relations between words

§ Synonyms have the same meanings in some or all contexts
o Couch / sofa, car / automobile
o [Note that there are no examples of perfect synonymy]

§ Antonyms senses that are opposite with respect to one feature of meaning
o Dark / light, short / long, slow / fast
o [Otherwise they are very similar]
o [Antonyms can define a binary opposition or be at opposite ends of a scale]

8

Relations between words

§ Hypernym / Hyponym (superordinate / subordinate)
o One sense is a hyponym of another if the first sense is more specific, denoting a

subclass of the other
Hyponym

Co
-h

yp
on

ym

9

How might we represent words?

“Lexical Semantics”
§ Dictionary definition
§ Lemma and word forms
§ Senses
§ Relationships between words or senses
§ Taxonomic relationships
§ Word similarity, word relatedness

10

Annotated Resources for Lexical
Semantics

§ https://wordnet.princeton.edu/
§ (python packages)

https://wordnet.princeton.edu/

11

How might we represent words?

“Lexical Semantics”
§ Dictionary definition
§ Lemma and word forms
§ Senses
§ Relationships between words or senses
§ Taxonomic relationships
§ Word similarity, word relatedness
§ Semantic frames and roles
§ Connotation and sentiment

12

How to represent a word

§ Until the ~2010s, in NLP words == atomic symbols
§ One-hot representations in vector space:

13

How to represent a word

§ Until the ~2010s, in NLP words == atomic symbols
§ One-hot representations in vector space:

§ Useful for coding identity
§ Can do matrix operations:

o Feed into machine learning models
o Matrix decompositions

14

How to represent a word

§ Until the ~2010s, in NLP words == atomic symbols
§ One-hot representations in vector space:

§ Sparse representations that scale with
vocabulary size

§ “tacos” is orthogonal to “burritos”
§ How can we encode word similarity (not

just identity)

15

Distributional hypothesis

§ Encode word similarity (not just identity) in word representations.
§ How to encode similarity?
§ Consider encountering a new word: tezgüino

o A bottle of tezgüino is on the table
o Everybody likes tezgüino
o Don’t have tezgüino before you drive
o We make tezgüino out of corn

16

Word-word co-occurrence matrix

https://www.baeldung.com/cs/co-occurrence-matrices

Apples are green and red.
Red apples are sweet.
Green oranges are sour

17

Distributional hypothesis

§ These representations encode distributional properties of each word.
§ The distributional hypothesis: words with similar meaning are used in similar

contexts.

“The meaning of a word is its use in the language.” [Wittgenstein 1943]

“If A and B have almost identical environments we say that they are synonyms.” [Harris
1954]

“You shall know a word by the company it keeps.” [Firth 1957]

18

How to encode context

Really really big

…

…

…

… sparse

19

How to encode context

§ TF-IDF
§ Word2Vec
§ Not covering other methods: e.g. Brown clusters, Matrix factorization

20

Encoding Context with TF-IDF

§ Consider a matrix of word counts across documents: term-document matrix

Bag-of-words document
representation

word vector

Words like the, it,
they are not very
discriminative, we
can do better
than raw counts

21

Encoding Context with TF-IDF

§ TF-IDF incorporates two terms that capture these conflicting constraints:
o Term frequency (tf): frequency of the word t in the document

!"!,# = 	log()*+,! !, . + 1)

22

Encoding Context with TF-IDF

§ TF-IDF incorporates two terms that capture these conflicting constraints:
o Term frequency (tf): frequency of the word t in the document

o Document frequency (df): number of documents that a term occurs in
o Inverse document frequency (idf):

o (N) is the number of documents in the corpus

!"!,# = 	log()*+,! !, . + 1)

2."! = 	log($#%!)
Higher for terms
that occur in
fewer documents

23

Encoding Context with TF-IDF

§ TF-IDF incorporates two terms that capture these conflicting constraints:
o Term frequency (tf): frequency of the word t in the document

o Document frequency (df): number of documents that a term occurs in
o Inverse document frequency (idf):

o (N) is the number of documents in the corpus

§ TF-IDF combines these two terms:

!"!,# = 	log()*+,! !, . + 1)

2."! = 	log($#%!)
Higher for terms
that occur in
fewer documents

!"−2."!,# = !"!,# ∗ 2."!

24

Notes about TF-IDF

§ Very useful way of creating document embeddings
o Designed for and still excels at document retrieval
o Often useful as features for classification models

§ We could use variants of log-odds with a Dirichlet prior ratios ortopic models to
create document or word embeddings

§ Word-embedding use cases of TF-IDF are not as common

25

Dimensionality Reduction

§ TF-IDF representations are still sparse
o Wikipedia: ~29 million English documents. Vocab: ~1 million words.

§ Sparse vs. dense vectors:
o Short vectors often easier to use as features in a classifier (fewer parameters).
o Dense vectors may generalize better than storing explicit counts.
o May better capture synonymy
o In practice, they just work better [Baroni et al. 2014]

§ How do we build dense vectors?

26

Word2Vec

§ Instead of counting how often each word w occurs near “corn”, train a classifier on a
binary prediction task: Is w likely to show up near “corn”?

§ Don’t actually care about performing this task, but we’ll take the learned classifier
weights as the word embeddings

§ Training is self-supervised: no annotated data required, just raw text!

27

Word2Vec: Two Algorithms

§ Context bag-of-words (CBOW): predict
current word using context
o ! "! "!"#, … , "!"$, "!%#, … , "!"$)

§ Skip-gram: predict each context word
using current word
o !("!"#, … , "!"$, "!%#, … , "!"$| "!)

28

Skip-gram: Probabilities

… that Europe needs unified banking regulation to replace the hodgepodge …
5!5!&'5!&(5!&) 5!*' 5!*(5!*+…

6 5!*, 5! = 6 *)) = exp(+-.:/)
∑01'2 exp(+0.:/)

Dot product (similarity
metric)
Larger dot product =
larger similarity

softmax functiono = index of outside (context) word
c = index of center word ("!)
V = vocab size u = vector for word as outside (context)

v = vector for word as center

We want to train a model to output 6 5!*, 5! . We define:

29

Skip-gram: How do we learn u and w?

… that Europe needs unified banking regulation to replace the hodgepodge …
5!5!&'5!&(5!&) 5!*' 5!*(5!*+…

m = 5

Data Likelihood: probability of any context word given center word (maximize)

< = 1
=>!1'

.
>

&34,43,,56
6(5!*,|5! , @)	

Objective Function: negative log probability (minimize)

< = − 1
=A!1'

.
A

&34,43,,56
log 6(5!*,|5! , @)

[Note we’re assuming
conditional independent]

30

< = − 1
=A!1'

.
A

&34,43,,56
log 6(5!*,|5! , @)

§ Gradient-based estimation (e.g. stochastic gradient descent)
§ Start with uninformed guess for u and w (e.g. random)
§ Iteratively change u and w in the way that locally best-improves the

guess
§ Computing gradients (e.g. derivatives) of the objective function with

respect to u and w inform how to change them

Skip-gram: How do we learn u and w?

6 5!*, 5! = 6 *)) = exp(+-.:/)
∑01'2 exp(+0.:/)

https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling

“v” input vector matrix “u” output vector matrix

At the end of training we’ve learned 2 sets of embeddings: we can average them
or just keep one of them

exp(+-.:/)
∑01'2 exp(+0.:/)

https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling

32

Short Break

33

Skip-gram
exp(+-.:/)

∑01'2 exp(+0.:/)

§ Problem:
o Denominator is computationally expensive! O(VK)
o Solutions:

• Hierarchical softmax O(log V)
• Negative Sampling O(1)

34

Skip-gram: Negative sampling

exp(+-.:/)
∑01'2 exp(+0.:/)

Encourage center word
and context word to
have similar vectors

Encourage center word
and all other words to
have different vectors

§ Intuition: we don’t need to down-weight all other words at once, we can chose a
small number of negative samples

35

Skip-gram: Negative sampling

§ New objective (single context word, k negative samples)

P(o | c) = 789(;"#<$)
∑%&'(789(;%#<$)

1
1 + 	exp(−+-.:/)

log 6 **) +	A
01'

?
log(1 − 6 *0))

§ (Problem changes from multiclass to binary)

36

Choosing negative samples

§ Generally choose frequent words
§ Could choose purely based on frequency P(w)

§ In	practice,	!& " = '()*!(,)!
∑" '()*!(,)!

with 3 = 0.75 works well (gives rare words slightly
higher probability)

37

Recap

§ We want meaningful representations of words that we can use for corpus analytics
(and other things)

§ By defining a fake task, predicting context from a word (skip-gram) or a word from
context (CBOW), we can learn vector matrices

§ Actual implementation requires additional tricks for reducing computational
complexity

38

Pre-trained Word2Vec Embeddings

§ https://code.google.com/archive/p/word2vec/
§ You can train embeddings on your own data
§ Depending on your application, you can also start with embeddings trained on large

data set

https://code.google.com/archive/p/word2vec/

39

Other word embeddings: GloVe
[Pennington et al. 2014]

§ https://nlp.stanford.edu/projects/glove/
§ “Global Vectors”
§ Model is based on capturing global corpus statistics
§ Incorporates ratios of probabilities from the word-word cooccurrence matrix

(intuitions of count-based models) with linear structures used by methods like
word2vec

https://nlp.stanford.edu/projects/glove/

40

Other word embeddings: fasttext
[Bojanowsi et al. 2017]

§ Word2vec can’t handle unknown words and sparsity of rare word-forms (e.g. we
should be able to infer ”milking” from “milk” + “ing”)

§ Uses subword models, representing each word as itself plus a bag of constituent n-
grams, with special boundary symbols < and > added to each word.

§ Each word is represented by the sum of all of the embeddings of its constituent n-
grams. Unknown words can be represented by just the sum of the constituent n-
grams.

41

Gensim: Python Package for working
with word embeddings

https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html

42

Takeaways

§ Intuitive ideas behind representing words as vectors
§ Distributional Hypothesis
§ Basic ideas behind TF-IDF weighting
§ Basic ideas behind Word2Vec

o Difference between CBOW and Skip-gram
o Practical challenges

§ Know where your embeddings came from and how they were made

43

Next Class

§ How do we know if our embeddings work?
§ What do we do with them?

44

HW 1

§ Released today
§ Individual assignment (ok to discuss at a high-level, but all code and written

responses must be your own)
§ 3 Parts:

o 1. Log-odds
o 2. Topic Modeling
o 3. Word Embeddings (we will have finished this material by Monday)

§ Policy reminder:
o 5 late days, no other extensions
o Can use late days in any way (except not for final project report)

45

HW 5 à”Project”

§ We’re going to refer to HW 5 as course project for scheduling reasons (more details
on the assignment later)

47

Acknowledgements and Resources

§ Slide content drew heavily from Emma Strubell and Yulia Tsvetkov’s slides:
http://demo.clab.cs.cmu.edu/11711fa20/slides/11711-04-word-vectors.pdf

§ Resources:
o Lecture Notes from Stanford NLP class on word embeddings

https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_no
tes_draft.pdf

o Efficient Estimation of Word Representations in Vector Space (original word2vec paper)
https://arxiv.org/pdf/1301.3781.pdf

o Distributed Representations of Words and Phrases and their Compositionality (negative
sampling paper)
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4
923ce901b-Paper.pdf

o Jurafsky and Martin textbook Chap 6: https://web.stanford.edu/~jurafsky/slp3/6.pdf

http://demo.clab.cs.cmu.edu/11711fa20/slides/11711-04-word-vectors.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_notes_draft.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n_winter2023_lecture1_notes_draft.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf

