
Language Models: Background

2

Overview

§ N-gram language models
§ Evaluation
§ Neural language models
§ Pre-trained language models

N-Gram Language Models

4

Probabilistic Language Models

§ Goal: Assign a probability to a sentence
§ Why?

o Machine Translation
• P(high winds tonight) > P(large winds tonight)

o Spell Correction
• P(about fifteen minutes from) > P(about fifteen minuets from)

o Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

o + many other tasks

5

Probabilistic Language Model

§ Goal: compute the probability of a sentence or sequence of words:
o 𝑃 𝑊 = 𝑃(𝑤!, 𝑤", 𝑤#, 𝑤$, 𝑤%…𝑤&)

§ Related task: probability of an upcoming word:
o 𝑃 𝑤% 𝑤!, 𝑤", 𝑤#, 𝑤$

§ A model that computes either of these:
o 𝑃 𝑊 or 𝑃 𝑤& 𝑤!, 𝑤", 𝑤#, … , 𝑤&'! 	is called a language model.

6

How to compute P(W)

§ How to compute this joint probability:
o P(its, water, is, so, transparent, that)

§ Intuition: let’s rely on the Chain Rule of Probability

7

How to compute P(W)

§ Recall the definition of conditional probabilities
o 𝑃 𝐵 𝐴 = ((*,,)

((*) Rewriting: 𝑃(𝐴, 𝐵) = 	 𝑃 𝐴 𝑃(𝐵|𝐴)

§ The Chain Rule in General
o 𝑃 𝑥!, 𝑥", 𝑥#, … , 𝑥& = 𝑃 𝑥!)𝑃 𝑥" 𝑥! 𝑃 𝑥# 𝑥!, 𝑥" …𝑃 𝑥& 𝑥!…𝑥&.!

8

The Chain Rule applied to compute
joint probability of words in sentence

§ P(“its water is so transparent”) = P(its) × P(water|its) × P(is|its water) × P(so|its
water is) × P(transparent|its water is so)

§ How do we estimate these probabilities?

𝑃 𝑤!, 𝑤", … , 𝑤# =&𝑃(𝑤$|𝑤!𝑤"…𝑤$%!)	

9

How to estimate these probabilities?

§ Try 1: count and divide?
o 𝑃 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡	 𝑖𝑡𝑠	𝑤𝑎𝑡𝑒𝑟	𝑖𝑠	𝑠𝑜) = /01&2(324	67289	34	40	297&4:798&2)

/01&2(324	67289	34	40)

§ Too many possible sentences!
§ We’ll never see enough data for estimating these

10

Markov Assumption

§ Simplifying assumption:
o 𝑃 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡	 𝑖𝑡𝑠	𝑤𝑎𝑡𝑒𝑟	𝑖𝑠	𝑠𝑜) ≈ 𝑃 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡	 𝑖𝑡𝑠	𝑤𝑎𝑡𝑒𝑟)

§ More generally:
o 𝑃 𝑤!, 𝑤", … , 𝑤& ≈ ∏3 𝑃(𝑤3|𝑤3';…𝑤3'!)

§ Unigram model: 𝑃 𝑤!, 𝑤", … , 𝑤& ≈ ∏3 𝑃(𝑤3)
§ Bigram model: 𝑃 𝑤!, 𝑤", … , 𝑤& ≈ ∏3 𝑃(𝑤3|𝑤3'!)
§ Trigram, 4-gram, 5-gram etc.

o In general, this is insufficient since language has long-term dependencies, but we
can often get away with it

11

Estimating bi-gram probabilities

§ Bigram model: 𝑃 𝑤!, 𝑤", … , 𝑤& ≈ ∏3 𝑃(𝑤3|𝑤3'!)
§ Maximum likelihood estimate

o 𝑃 𝑤3 𝑤3'! = <01&2(6!"#,6!)
<01&2(6!"#)

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

12

Practical considerations

§ Typically put everything into log space (avoid underflow and adding is faster than
multiplying)

§ What do we do about rare words? We might have word combinations we never saw
in the training set (that we used to estimate probabilities)
o Smoothing, backoff, interpolation

§ There can be LOTS of n-grams
o Pruning (only store probabilities for frequent ones)
o Efficient data structures

Evaluation

14

Extrinsic (in-vivo) Evaluation

§ To compare models A and B:
o Put each model in a real task: Machine Translation, speech recognition, etc.
o Run the task, get a score for A and for B

• How many words translated correctly
• How many words transcribed correctly

o Compare accuracy for A and B
§ Disadvantages:

o Expensive, time-consuming
o Doesn't always generalize to other applications

15

Intrinsic (in-vitro) evaluation

§ Perplexity
o Directly measures language model performance at predicting words
o Single general metric for language models
o Doesn't necessarily correspond with real application performance
o Useful for large language models (LLMs) as well as n-grams

§ Data setup:
o Train model (e.g. estimate probabilities) on training set
o Compute perplexity on held-out test set

16

Perplexity: Intuition

§ A good LM is one that assigns a higher probability to the next word that actually
occurs

§ “Its water is so _______”
o Model A: transparent: 0.3, blue: 0.3, orange: 0.01, red: 0.02
o Model B: transparent: 0.01, blue: 0.01, orange: 0.01, red: 0.9

§ Generalize to all words: best LM assigns high probability to the entire test set
§ When comparing two LMs, A and B

o We compute PA(test set) and PB(test set)
o The better LM will give a higher probability to (=be less surprised by) the test set

than the other LM

17

Perplexity

§ Probability depends on size of test set
o Probability gets smaller the longer the text
o Better: a metric that is per-word, normalized by length

§ Perplexity is the inverse probability of the test set, normalized by the number of
words

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

18

Perplexity

§ Perplexity is the inverse probability of the test set, normalized by the number of
words

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

(The inverse comes from the original definition of perplexity from cross-entropy
rate in information theory)
Probability range is [0,1], perplexity range is [1,∞]
Minimizing perplexity is the same as maximizing probability

19

Perplexity

§ Perplexity for a bigram model

Neural Language Models

21

Neural Language Model

§ Don’t count, predict
§ Input: word embeddings [𝑥!, 𝑥", … 𝑥&]

22

Neural Language Model

§ Don’t count, predict
§ Input: word embeddings [𝑥!, 𝑥", … 𝑥&]
§ Output: P(𝑤3, 𝑤3'!, … , 𝑤", 𝑤!]

23

A feed-forward neural language model

§ We can’t handle variable sized inputs or very long sequences
§ Fix size of previous context (e.g. k=4)

24

A feed-forward neural language model

Concatenate k word
embeddings: x =
[𝑥3'$; 𝑥3'#; 𝑥3'"; 𝑥3'!]

We can start with
pretrained embeddings like
word2vec or train the
embeddings along with the
model

Dimensionality

4dword embeddings

25

A feed-forward neural language model

Concatenate k word
embeddings: x =
[𝑥3'$; 𝑥3'#; 𝑥3'"; 𝑥3'!]

Hidden layer f(𝜃=→? x)

𝜃!→#

Dimensionality

4dword embeddings

dz x 4dword embeddings

dz

26

A feed-forward neural language model

Concatenate k word
embeddings: x =
[𝑥3'$; 𝑥3'#; 𝑥3'"; 𝑥3'!]

Dimensionality

4dword embeddings

Hidden layer f(𝜃=→? x)

𝜃!→# dz x 4dword embeddings

dz

𝜃#→$
Output layer SoftMax(𝜃?→@ z)

𝒘𝒊

V x dz

V

27

Comparison with n-gram language
model

§ Improvements:
o Model size: O(V) instead of O(Vn)
o Lack of sparsity
o Sharing of representations across words

§ Remaining challenges:
o We still need to truncate context; model size grows linearly with context size
o Model weights are shared across words (each 𝑥3	uses different rows of 𝜃=→?)

28

Solutions: Recurrent neural network

§ Maintain a context vector, h. At each timestep (wj), compose the context with the
§ current word xj to create a new context for the next timestep:

29

Training tricks

§ Same problem with word embeddings, softmax over the vocabulary is expensive à
hierarchical softmax

§ In theory, we can propagate information over arbitrarily long context à in practice
gradient can vanish or explode à gradient clipping, gating mechanisms

§ Overfitting à dropout and regularization

§ Other architectures:
o Long short term memory (LSTM)

30

Stacking RNNs

31

Bidirectional RNNs
§ In language it’s often useful to model past and future context
§ We can run an RNN in the opposite direction (reverse reading order)
§ Combining forwards and backwards directions works best

32

Break

Pre-trained Language Models

34

Recall: Word Embeddings

§ Key idea: pre-train word embeddings with a self-supervised objective (e.g. CBOW or
skip-gram in word2vec)

§ Incorporate pre-trained word embeddings into task-specific models

§ Problem:
o Single embedding representation for each word

35

Recall: Word Embeddings

§ “the new-look play area is due to be completed by early spring 2020”
§ “gerrymandered congressional districts favor representatives who play to the party

base”
§ “the freshman then completed the three-point play for a 66-63 lead”

§ Multiple senses get entangled
§ Nearest neighbors:

o playing played Play
o game plays football
o games player multiplayer

36

Contextualized Representations
§ Preferred approach: contextualized representations where the embedding changes

with context

§ [But still want to leverage self-supervised training on large data]

§ ELMo (“Embeddings from Language Model”)
o Use hidden representation from language model
o (keep middle layers instead of only the embedding layer)

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Representations. NAACL

37

ELMo: Deep contextualized word
embeddings
Stacked bi-directional LSTM

Interpolated weights are task-specific (fine-tuned on supervised data)

38

ELMo: Deep contextualized word
embeddings

§ Adding ELMo to existing state-of-the-art models provides significant improvement on
essentially all NLP tasks.

39

How is ELMo useful for social text
processing?

§ Higher-performance for supervised learning
o [Mostly eclipsed by future models]

§ Adding context to lexicons:
o “The hero deserves appellation”
o “The boy deserves punishment”

40

Contextual Affective Analysis: A Case Study of
People Portrayals in Online #MeToo Stories

Anjalie Field, Gayatri Bhat, and Yulia Tsvetkov. "Contextual Affective Analysis: A Case Study of People Portrayals in
Online #MeToo Stories" ICWSM (2019)

41

How is ELMo useful for social text
processing?

§ Higher-performance for supervised learning
o [Mostly eclipsed by future models]

§ Adding context to lexicons:
o “The hero deserves appellation”
o “The boy deserves punishment”

§ Word embeddings analyses?

Anjalie Field, Gayatri Bhat, and Yulia Tsvetkov. "Contextual Affective Analysis: A Case Study of People Portrayals in
Online #MeToo Stories" ICWSM (2019)

42

ELMo à BERT

§ Key differences:
o BiLSTM –> Transformer
o Treat layers as static embeddings à keep entire model and update it during task-

specific training
o Next token prediction à Masked Language Modeling training objective

43

The Transformer

§ Stacks of transformer blocks,
each of which is a multilayer
network that maps sequences of
input vectors (x1,..., xn) to
sequences of output vectors
(z1,..., zn) of the same length

§ Blocks are made by combining
self-attention layers, simple
linear layers, feedforward
networks, and self-attention
layers (the key innovation of
transformers)

https://deeprevision.github.io/posts/001-transformer/

44

Recap
§ N-gram language models
§ Evaluation
§ Neural language models
§ Pre-trained language models (ELMoàBERT)

45

Next Class

§ Guest Lecture: Hahrie Han

§ Professor of Political Science
§ Director of the Agora Institute

§ Research Interests: Civic and political participation, collective
action, organizing, and social change, focusing particularly on
the role of civic associations

§ Title: “Mapping the Modern Agora and Other Applications to
Dilemmas in Democracy"

46

Acknowledgements

§ Slide thanks to Jurafsky&Martin and Strubell&Tsvetkov

