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Probabilistic Language Models

= Goal: Assign a probability to a sentence
= Why?
o Machine Translation
« P(high winds tonight) > P(large winds tonight)
o Spell Correction
« P(about fifteen minutes from) > P(about fifteen minuets from)
o Speech Recognition
« P(I saw a van) >> P(eyes awe of an)
o + many other tasks
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Probabilistic Language Model

= Goal: compute the probability of a sentence or sequence of words:
o P(W) = P(wy, Wy, W3, Wy, We ... Wy,)

= Related task: probability of an upcoming word:
O P(W5|W1,W2,W3,W4)

= A model that computes either of these:
o P(W) or P(w,|wq,wy,ws, ...,w,_4) is called a language model.
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How to compute P(W)

= How to compute this joint probability:
o P(its, water, is, so, transparent, that)

= Intuition: let’s rely on the Chain Rule of Probability
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How to compute P(W)

= Recall the definition of conditional probabilities

o P(B|A) = % Rewriting: P(4,B) = P(A)P(B|A)

= The Chain Rule in General
o P(xq1,%2,x3, ..., %) = P(x1)P(x2]|x1)P(x3]x1, x2) ... P(Xp|%1 ... Xp=1)
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The Chain Rule applied to compute
joint probability of words in sentence

P(wy,wy, .., Wy) = HP(Wi|W1W2 W Wi_q1)

= P(“its water is so transparent”) = P(its) x P(water|its) x P(is|its water) x P(solits
water is) x P(transparent|its water is so)

= How do we estimate these probabilities?
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How to estimate these probabilities?

= Try 1: count and divide?
Count(its water is so transparent)

Count(its water is so)

o P(transparent |its water is so) =

= Too many possible sentences!
= We'll never see enough data for estimating these
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Markov Assumption

Simplifying assumption:
o P(transparent |its water is so) = P(transparent |its water)

More generally:
o P(Wy,Wa, e, W) = [Ty POW; Wiy i)

Unigram model: P(wy, wy, ..., wy) = [[; P(w;)
Bigram model: P(wy, wy, ...,wy,) = [[; P(w;|wi_1)

Trigram, 4-gram, 5-gram etc.

o In general, this is insufficient since language has long-term dependencies, but we
can often get away with it
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Estimating bi-gram probabilities

= Bigram model: P(wy,wy, ...,wy) = []; P(wi|w;_1)
= Maximum likelihood estimate

count(wi—1,w;)

e P(Wilwi—l) = count(wij_1)

<s>1am Sam </s>
<s>Sam I am </s>

<s> I do not like green eggs and ham </s>
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Practical considerations

= Typically put everything into log space (avoid underflow and adding is faster than
multiplying)

= What do we do about rare words? We might have word combinations we never saw
in the training set (that we used to estimate probabilities)

o Smoothing, backoff, interpolation

= There can be LOTS of n-grams

o Pruning (only store probabilities for frequent ones)
o Efficient data structures
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Extrinsic (in-vivo) Evaluation

= To compare models A and B:
o Put each model in a real task: Machine Translation, speech recognition, etc.
o Run the task, get a score for A and for B
« How many words translated correctly
« How many words transcribed correctly
o Compare accuracy for A and B

= Disadvantages:
o Expensive, time-consuming
o Doesn't always generalize to other applications
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Intrinsic (in-vitro) evaluation

= Perplexity
o Directly measures language model performance at predicting words
o Single general metric for language models
o Doesn't necessarily correspond with real application performance
o Useful for large language models (LLMs) as well as n-grams

= Data setup:
o Train model (e.g. estimate probabilities) on training set
o Compute perplexity on held-out test set
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Perplexity: Intuition

= A good LM is one that assigns a higher probability to the next word that actually
occurs

144

= “Tts water is so
o Model A: transparent: 0.3, blue: 0.3, orange: 0.01, red: 0.02
o Model B: transparent: 0.01, blue: 0.01, orange: 0.01, red: 0.9

= Generalize to all words: best LM assigns high probability to the entire test set

= When comparing two LMs, A and B
o We compute P,(test set) and Pg(test set)

o The better LM will give a higher probability to (=be less surprised by) the test set
than the other LM

= JOHNS HOPKINS
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Perplexity

= Probability depends on size of test set
o Probability gets smaller the longer the text
o Better: a metric that is per-word, normalized by length

= Perplexity is the inverse probability of the test set, normalized by the number of
words

1
PP(W) = Pww,.wy) N

P(ww,..wy)

@ JOHNS HOPKINS

17



Perplexity

= Perplexity is the inverse probability of the test set, normalized by the number of
words 1

PP(W) = Pww,.wy) N

Pww,..wy)

(The inverse comes from the original definition of perplexity from cross-entropy
rate in information theory)

Probability range is [0,1], perplexity range is [1,00]

Minimizing perplexity is the same as maximizing probability
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Perplexity

= Perplexity for a bigram model

PP(W)
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Neural Language Model

= Don't count, predict
= Input: word embeddings [x;, x5, ... x5, ]

neural network

breathless runners
Wi—4 Wi_3
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Neural Language Model

= Don't count, predict
= Input: word embeddings [x;, x5, ... x5, ]
= Qutput: P(w;, w;_q, ..., Wy, wq]

aardvark
4

softmax((O0000))

neural network

breathless runners
Wi—4 Wi_3
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A feed-forward neural language model

= We can't handle variable sized inputs or very long sequences

W.
= Fix size of previous context (e.g. k=4) I

softmax((O0000))

neural network

breathless runners approached the
Wi—4 Wi_3 Wi—2 Wi—1
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A feed-forward neural language model

Dimensionali
We can start with ty

pretrained embeddings like
word2vec or train the
embeddings along with the
model

Concatenate k word

embeddings: x = X [OOOOIOOOOIOOOOIOOOO] 4dword embeddings
[Xi—45 i35 Xi—2; X1 ] Xi—4  Xi=3  Xi—2  Xi-1
breathless runners  approached the

=
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A feed-forward neural language model

Dimensionality

Hidden layer f(8*~% x) Z [QQQQQQOQOQ) d,

T g*~z d, X 4dword embeddings
embeddings: x = X ([0000/0000)0000I0000)  4hord embeceings
(245 X3} Xj—2; Xi—1 ] Xi—4 Xi—3 Xj—2 Xi—1

breathless runners  approached the
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A feed-forward neural language model

Wi

T

Dimensionality

softmax( [Qooooooooooooj) v

Output layer SoftMax(6%~Y z) T V X d
gz<=y y4
Hidden layer f(6*~7 x) Z (OOOOOOOO0O0) d;
T x>z d, X 4dyord embeddings
Concatenate k word
embeddings: x = X [OOOOIOOOOIOOOOIOOOO] 4dword embeddings
[Xi—45 i35 Xi—2; X1 ] Xi—4  Xi-3  Xi—2  Xj-1
breathless runners  approached the
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Comparison with n-gram language
model

= Improvements:
o Model size: O(V) instead of O(V")
o Lack of sparsity
o Sharing of representations across words

= Remaining challenges:
o We still need to truncate context; model size grows linearly with context size
o Model weights are shared across words (each x; uses different rows of 6*~%)
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Solutions: Recurrentneural network

= Maintain a context vector, h. At each timestep (w;), compose the context with the
= current word x; to create a new context for the next timestep:

h; = RNN(x;, hy—1)

ho

OO0Q) -+ (OOOO)

Xi—3

breathless

Wi—3
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runners

Wi_2

Wit1

softmax((OOO000))

hi—3 hi—> hi_1 h;
O000O O00Q) *+ (OOOO)J— OO0 —OOOOI— OO0

OOO0)

Xi—1

approached

Wi—1
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Training tricks

= Same problem with word embeddings, softmax over the vocabulary is expensive >
hierarchical softmax

= In theory, we can propagate information over arbitrarily long context - in practice
gradient can vanish or explode - gradient clipping, gating mechanisms

= Qverfitting - dropout and regularization

= QOther architectures:
o Long short term memory (LSTM)

@ JOHNS HOPKINS
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Stacking RNNs

0000 O000) ** (OOOO—OOOOF—O0O0)—*OC0O00) | layer L

0000 OOOO OOOO*OOOO—*OOOO—*OOOO layer 2

000+ (0OOOF—+000O—{0000—+0Q0J)| layer 1

A

(©O00) -+ (OO00) (OO0 (OOO0) (e]e]ee)

breathless runners  approached the
wi_3 Wi_2 Wi—1 Wi
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Bidirectional RNNs

= In language it's often useful to model past and future context
= We can run an RNN in the opposite direction (reverse reading order)
= Combining forwards and backwards directions works best

O0000000)
concatenate

0000 0000

OO00) (OOO0O

as the breathless runners approached the
Wi Wi—1 Wi_2 Wi_3
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Recall: Word Embeddings

= Key idea: pre-train word embeddings with a self-supervised objective (e.g. CBOW or
skip-gram in word2vec)

= Incorporate pre-trained word embeddings into task-specific models

= Problem:
o Single embedding representation for each word

‘rﬁ JOHNS HOPKINS
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Recall: Word Embeddings

play =

-1.36

-0.9

0.71

-0.22

0.77

-1.36

-0.72

0.71

0.15] ...

= “the new-look play area is due to be completed by early spring 2020”

= “gerrymandered congressional districts favor representatives who play to the party

base”

= “the freshman then completed the three-point play for a 66-63 lead”

= Multiple senses get entangled

= Nearest neighbors:

o playing played Play
o game plays football
o games player multiplayer

‘rﬁ JOHNS HOPKINS
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Contextualized Representations

= Preferred approach: contextualized representations where the embedding changes
with context

= [But still want to leverage self-supervised training on large data]

= ELMo ("Embeddings from Language Model”)
o Use hidden representation from language model
o (keep middle layers instead of only the embedding layer)

ﬁ]’ JOHNS HS”’{\"V* Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Representations. NAACL
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ELMo: Deep contextualized word
embeddings

Stacked bi-directional LSTM
._.._,<—><—> 0000 layer 2
R MG SSNG SC
.- 0000 (0000 (000 (G000 (OGO layerOd

the breathless runners  approached the

L
breathlessy. OOO0) + $2°(O000) + 53°(CO00)) z;sj =1
J:

Interpolated weights are task-specific (fine-tuned on supervised data) 37

—, JOHNS HOPKINS
" W NG SCHOC
EN NEE N(



ELMo: Deep contextualized word
embeddings

= Adding ELMo to existing state-of-the-art models provides significant improvement on
essentially all NLP tasks.

INCREASE
TASK | PREVIOUS SOTA OUR ~ ELMo+  \ yooLuTE/

BASELINE BASELINE RELATIVE)

question answering SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7 1 24.9%
natural language inference SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £ 0.17 0.7/5.8%

semantic role labeling SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
coreference Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
named entity recognition NER Peters et al. (2017) 9193 +£0.19 || 90.15 9222 +0.10 2.06/21%
sentiment analysis SST-5 McCann et al. (2017) 53.7 || 51.4 54.7 £ 0.5 3.3/6.8%
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How is ELMo useful for social text
processing?

= Higher-performance for supervised learning
o [Mostly eclipsed by future models]

= Adding context to lexicons:
o “The hero deserves appellation”
o “The boy deserves punishment”

!rﬁ JOHNS HOPKINS
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Contextual Affective Analysis: A Case Study of
People Portrayals in Online #MeToo Stories

]
0.8 0.1
508 0.05
o) Hillary Clinton
3 g 0 '
é A Clinton IM°°'e *
£ )
.g g 0.05
N 0.2 (o Cosby

0.4
Leeann Tweeden 0.
Roy Moore
' 0.1
Bill Cosby
0 -0.15 Tweeden

=1y JOHN% HOI KINS Anjalie Field, Gayatri Bhat, and Yulia Tsvetkov. "Contextual Affective Analysis: A Case Study of People Portrayals in 40
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How is ELMo useful for social text
processing?

= Higher-performance for supervised learning
o [Mostly eclipsed by future models]

= Adding context to lexicons:
o “The hero deserves appellation”
o “The boy deserves punishment”

= Word embeddings analyses?

‘." JOHNS H" PKINS - Anjalie Field, Gayatri Bhat, and Yulia Tsvetkov. "Contextual Affective Analysis: A Case Study of People Portrayals in
ENGINE} Online #MeToo Stories" ICWSM (2019)
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ELMo - BERT

= Key differences:
o BiLSTM —> Transformer
o Treat layers as static embeddings - keep entire model and update it during task-
specific training
o Next token prediction - Masked Language Modeling training objective

—, JOHNS HOPKINS
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The Transformer

= Stacks of transformer blocks,
each of which is a multilayer
network that maps sequences of
input vectors (Xy,..., X,) to
sequences of output vectors
(z4,..., Z,) of the same length

Output probabilities

-

Encoder
= Blocks are made by combining
self-attention layers, simple Hiiread
linear layers, feedforward Attention
networks, and self-attention -
layers (the key innovation of -

transformers)

Embeddings

Input sequence

[ Positional encoding

[ Softmax ]
Decoder
4 1 )
([ Add&Norm =
I
[ MLPs ]
4
([ Add&Norm  }—
[ Multi-head
L Attention
1
( Add&Norm |«
T
Masked Multi-head
Attention
A
- J

[

Embeddings ]
|

Target sequence
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https://deeprevision.github.io/posts/001-transformer/
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Recap

N-gram language models

Evaluation

Neural language models
Pre-trained language models (ELMo—>BERT)
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Next Class

= Guest Lecture: Hahrie Han

= Professor of Political Science
= Director of the Agora Institute

= Research Interests: Civic and political participation, collective
action, organizing, and social change, focusing particularly on
the role of civic associations

= Title: "Mapping the Modern Agora and Other Applications to
Dilemmas in Democracy"
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