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Today (and next class)

▪ Word-level metrics, statistics, Bayesian Inference

▪ Exploratory text analysis
o First approaches when working with a new data set – what can we do with 

minimal supervision? Minimal information about the data?

Monroe BL, Colaresi MP, Quinn KM. Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the 
Content of Political Conflict. Political Analysis. 2008;16(4):372-403. doi:10.1093/pan/mpn018
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Background

▪ One of the most fundamental analyses we may want to conduct is, how does word 
usage differ in different corpora?
o How do AI policy discussions differ in the U.S. and Europe?

• Maybe U.S. politicians use words like “innovation” while European politicians 
use words like “privacy” [fictional example]

o How do Wikipedia articles about men and women differ?
• Articles about women focus on family and relationships more than articles 

about men (Wagner et al. 2015) [fictional words: ”family”, ”children”, 
“married”, “divorce”]

▪ “Entries in the burgeoning ‘‘text-as-data’’ movement are often accompanied by lists 
or visualizations of how word (or other lexical feature) usage differs across some pair 
or set of documents”
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Example: Russia-Ukraine War 
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Example: State-affiliated outlets use 
“operation” over “war”

▪ We know to look for these 
terms because of laws passed 
in Russia, but what if we want 
to discover these differences?

“Challenges in Opinion Manipulation Detection: An Examination of Wartime Russian Media” Chan Young Park, Julia 
Mendelsohn, Anjalie Field, Yulia Tsvetkov (Findings of EMNLP, 2022)
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Running Example: Congressional Record

▪ How does word usage differ in speeches made by Republican and Democratic members 
of congress?
o “The question is not which of these terms are partisan and which are not, but which 

are the most partisan, on which side, and by how much.” [Monroe et al. 2008]
Data credits:
• The corpus was originally constructed in plaintext format by Gentzkow, Shapiro, and 

Taddy (2018) (repository for full download, license).
• Preprocessed by Rodriguez and Spirling (2021) (code, R data file): remove non-

alphabetic characters, lowercase, and remove words of length 2 or less, then filter to 
Congressional sessions 111-114 (Jan 2009 - Jan 2017) and to speakers with party 
labels D and R.

• Converted plaintext and csv files and subsampled by Sandeep Soni and Connor Gilroy 
(code)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fdata.stanford.edu%2Fcongress_text
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fopendatacommons.org%2Flicenses%2Fby%2F1-0%2F
https://github.com/prodriguezsosa/EmbeddingsPaperReplication/blob/main/code/estimation/preprocess_cr.R
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.dropbox.com%2Fsh%2Fjsyrag7opfo7l7i%2FAACzhO8d8xFJucWgApbEGggPa%2Fdata%3Fdl%3D0
https://colab.research.google.com/corgiredirector?site=http%3A%2F%2Fsandeepsoni.github.io%2F
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fccgilroy.com%2F
https://colab.research.google.com/drive/16cM5NXedlrvU2mp-HcYKs9OIMkYItTS1?usp=sharing#scrollTo=vn1-E1LxqwYQ
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Some initial ideas: proportion of words

▪ Which words have the highest frequency in 
statements by Democrats?
o “the”, “and”, “that”, "this”, “for", “have”, 

“are”, “not”

▪ Which words have the highest frequency in 
statements be Republicans?
o “the”, “and”, “that”, ”for”, “this", “have”, 

“are”, “our”
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Some initial ideas: Odds ratio

▪ Odds ratio: 𝑂𝑤
𝑖  = 𝑓𝑤

1 − 𝑓𝑤
, where 𝑓𝑤 is the proportion of word w in corpus subset i

▪ Odds ratio between two groups: 𝜃𝑤
(𝑖−𝑗) = 𝑂𝑤

𝑖

𝑂𝑗
𝑤

▪ Log-odds ratio: log(𝑂𝑤
𝑖 ) – log(𝑂𝑗

𝑤) is symmetrical
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Some initial ideas: Odds ratio

▪ Odds ratio: 𝑂𝑤
𝑖  = 𝑓𝑤

1 − 𝑓𝑤

▪ Odds ratio between two groups: 𝜃𝑤
(𝑖−𝑗) = 𝑂𝑤

𝑖

𝑂𝑗
𝑤

▪ Log-odds ratio: log(𝑂𝑤
𝑖 ) – log(𝑂𝑗

𝑤)

Becomes infinite/undefined 
if words only exist in one 
corpus
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Odds ratio in Congressional data
Word Odds-Ratio Frequency in 

Republican 
Speech

Frequency in 
Democratic 
Speech

idahoans -5.46 211 1

fairtax -4.99 131 1
cdh -4.75 103 1
isna -4.71 99 1

zinser 4.96 1 161
gaspee 4.74 1 128
vermonters 4.59 5 555
corinthian 4.57 2 218
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Some initial ideas: Odds ratio

▪ Odds ratio: 𝑂𝑤
𝑖  = 𝑓𝑤

1 − 𝑓𝑤

▪ Odds ratio between two groups: 𝜃𝑤
(𝑖−𝑗) = 𝑂𝑤

𝑖

𝑂𝑗
𝑤

▪ Log-odds ratio: log(𝑂𝑤
𝑖 ) – log(𝑂𝑗

𝑤)

Becomes infinite if words 
only exist in one corpus

Becomes dominated by 
obscure words
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Model-driven approach

▪ Clear that simple methods aren’t going to work
▪ General statistical modeling approach:

o Given a collection of data
• Assume you generated this data from 

some model
• Estimate model parameters

▪ Example:
o Assume you gathered data by sampling 

from a normal distribution
o Estimate mean and stdev
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Model-driven approach

▪ High-level idea: 
o First model the word usage in the full collection of documents
o Then investigate how subgroup-specific word usage diverges from that in the full 

collection of documents

▪ Incorporate a prior
o Background estimate of how often a word is used in this type of document
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Bag-of-words (BOW) assumption

▪ ”the state of healthcare in this country 
is…”

▪ We ignore ordering of words and 
assume that we can represent the 
document collection as a “bag of words”

▪ [We’ve already been doing this 
implicitly]

country state the

healthcare

is
of

in this
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Terminology

▪ y  = vector of term counts in the corpus

▪ n = number of terms in the corpus 
▪ n = 101 + 60 + 10 … + 11 + 231

101 60 10 … 11 231

country state healthcare … employment the
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Terminology

Define:
o y  = vector of term counts in the corpus
o n = number of terms in the corpus 
o 𝝅 = unknown distribution the vocabulary

▪ Assume:
o y ~ Multinomial(n, 𝝅)
o Intuition: we got y by repeatedly sampling from a bag. 𝝅 describes how many of 

each word is in the bag
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Impose Dirichlet Prior on 𝜋

𝒚(𝑖) ~ Multinomial(𝑛(𝑖), 𝝅(𝑖)) 𝒚(𝑗) ~ Multinomial(𝑛(𝑗), 𝝅(𝑗))

𝝅~ Dirichlet(𝜶)
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What is a Dirichlet distribution?

dog   the cat
















=

0
0
1

 1=
i
i

0

▪ We can plot multinomial probability distributions

1

1

1

1

3

2

the
















=

3.0
5.0
2.0



dog   cat

1=
i
i

slide thanks to Nigel Crook/Jason Eisner

▪ Shape we get is a simplex
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What is a Dirichlet distribution?

slide thanks to Nigel Crook/Jason Eisner

0 1

1

1

3

2

1

• A Dirichlet distribution is a distribution over multinomial distributions  in the 
simplex

0 1

1

1

1

3

2
1

1

3

1
1

1
2
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Example draws from a Dirichlet 
distribution over the 3-simplex

slide thanks to Nigel Crook/Jason Eisner

[higher alpha – more dense]

[lower alpha – more sparse]
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Impose Dirichlet Prior on 𝜋

𝒚(𝑖) ~ Multinomial(𝑛(𝑖), 𝝅(𝑖)) 𝒚(𝑗) ~ Multinomial(𝑛(𝑗), 𝝅(𝑗))

𝝅~ Dirichlet(𝜶)
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Impose Dirichlet Prior on 𝜋

Frequency of a term in 
the entire corpus

321 176 53 … 54 543

country state healthcare … employment the

𝝅~ Dirichlet(𝜶)
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Impose Dirichlet Prior on 𝜋

𝒚(𝑖) ~ Multinomial(𝑛(𝑖), 𝝅(𝑖)) 𝒚(𝑗) ~ Multinomial(𝑛(𝑗), 𝝅(𝑗))

𝑦(𝑖) can be word frequencies for Democrat Speech
𝑦(𝑗)can be word frequencies for Republican Speech

Both are assumed to have the same prior – frequency in general 
congressional speech

𝝅~ Dirichlet(𝜶)
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Generative Story

For each subset of our corpus,
•  𝑦(𝑖), 𝑛(𝑖) and 𝜶 are observed in the data (where 𝑦(𝑖) contains counts 

of w)
•  𝝅(𝑖) is what we need to estimate

1. Draw 𝝅(𝑖)~ Dirichlet 𝜶
2. For 𝑛(𝑖) steps:

1. Draww ~ Multinomial(𝝅(𝑖))
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Another aside about distributions
▪ Prior distribution: P(𝝅)
▪ Posterior distribution: P(𝝅 | w)

▪ When the posterior distribution is in the same family as the prior distribution, they 
are called conjugate distributions

▪ The Dirichlet distribution is a conjugate prior of the multinomial distribution

▪ [For our purposes, we often chose a Dirichlet prior for a multinomial distribution 
because it makes inference easier]
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Point estimate of 𝜋 

𝜋𝑤
𝑖 =

𝑦𝑤
(𝑖) +  𝛼𝑤

𝑛(𝑖) +  𝛼0
Point estimate of 𝜋, 𝑤ℎ𝑒𝑟𝑒 𝛼0 =  σ 𝛼𝑤

Intuitive interpretation: imagine we saw 𝛼0 additional words 
and 𝛼𝑤 were w
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Point estimate of 𝜋 

𝜋𝑤
𝑖 =

𝑦𝑤
(𝑖) +  𝛼𝑤

𝑛(𝑖) +  𝛼0

𝛿𝑤
(𝑖−𝑗) = log( 𝜋𝑤

𝑖

1−𝜋𝑤
𝑖 ) – log( 𝜋𝑤

𝑗

1−𝜋𝑤
𝑗 )

Point estimate of 𝜋, 𝑤ℎ𝑒𝑟𝑒 𝛼0 =  σ 𝛼𝑤

Log-odds ratio with 𝜋 instead of 
frequencies 

𝛿𝑤
(𝑖−𝑗) = log( 𝑦𝑤

𝑖 +𝛼𝑤

𝑛(𝑖)+ 𝛼0 −𝑦𝑤
𝑖 −𝛼𝑤

) − log( 𝑦𝑤
𝑗 +𝛼𝑤

𝑛(𝑗)+ 𝛼0 −𝑦𝑤
𝑗 −𝛼𝑤

)
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Congressional data with Dirichlet prior
Word 𝛿 (rounded) Frequency in 

Republican 
Speech

Frequency in 
Democratic 
Speech

idahoans -0.7321 210 0

fairtax -0.7321 130 0
cdh -0.7321 102 0
isna -0.7321 98 0

zinser 0.6542 0 160
gaspee 0.6542 0 127
vania 0.6542 0 105
fiveminute 0.6542 0 95

We don’t have to 
drop zero counts 
anymore, but this 
isn’t that much better 
than before!

We could impose a 
stronger prior?
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Variance

▪ Report z-score: point estimate divided by variance
o Lower-frequency words have higher variance

With some assumptions, we can estimate:

𝜎2(𝛿𝑤
(𝑖−𝑗)) ≈ 1

𝑦𝑤
(𝑖)+𝛼𝑤

(𝑖) + 1

𝑦𝑤
(𝑗)+𝛼𝑤

(𝑗)

And use as our final score:
𝛿𝑤

(𝑖−𝑗)

𝜎2(𝛿𝑤
(𝑖−𝑗))
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Odds ratio in Congressional data
Top Republican Words Score Top Democrat Words Score

spending -66.26 republican 56.63
obamacare -59.90 wealthiest 40.78
government -47.92 rhode 39.43
going -45.33 women 38.16
that -44.58 pollution 33.66
trillion -43.43 republicans 32.86
taxes -42.39 gun 32.45
you -40.85 investments 32.22
administration -39.07 families 31.93
debt -38.92 violence 30.88
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New Example: Narrative framing in 
restaurant reviews

Jurafsky, Dan, et al. "Narrative framing of consumer sentiment in online restaurant reviews." First Monday (2014)

▪ As online reviews have become commonplace, they offer an opportunity to study 
consumer behavior

▪ How do consumers frame positive and negative sentiment online?

▪ Data:
o 900,000 Yelp restaurant reviews from 9 cities: Boston, Chicago, Los Angeles, 

New York, Philadelphia, San Francisco, and Washington D.C
o Corpus subsets:

• “i” = one star reviews
• “j” = 5 star reviews
• Prior: entire review corpus
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New Example: Narrative framing in 
restaurant reviews

“In summary, one–star reviews were overwhelmingly focused on narrating experiences 
of trauma rather than discussing food, both portraying the author as a victim and using 
first person plural to express solace in community.”

Jurafsky, Dan, et al. "Narrative framing of consumer sentiment in online restaurant reviews." First Monday (2014)
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More serious example: Racial differences 
CPS services

▪ Words used in caseworker notes 
about families referred to child 
protective services

▪ Compare words used in notes 
about about Black families vs. 
white families

Field, Anjalie, et al. "Examining risks of racial biases in NLP tools for child protective services." FAccT. 2023.
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Alternate Approach: Pointwise-mutual 
information

▪ Probability/Information theory measure of association
▪ Common formulation: measure how often two events, x and y occur, compare with 

what we would expect if they were independent 

𝑃𝑀𝐼 𝑥, 𝑦 = 𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝 𝑥 𝑝(𝑦)

How often we 
observe x and y 
together

How often we expect x 
and y to co-occur, if they 
each occur independently
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Alternate Approach: Pointwise-mutual 
information

▪ Compute the co-occurrence between a word w and a label i

𝑃𝑀𝐼 𝑤, 𝑖 = 𝑙𝑜𝑔
𝑝(𝑤, 𝑖)

𝑝 𝑤 𝑝(𝑖)

Probability of w 
and i co-occurring

Probability of 
w occurring

Probability of i 
occurring
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Computing PMI

𝑃𝑀𝐼 𝑤, 𝑖 = 𝑙𝑜𝑔
𝑝(𝑤, 𝑖)

𝑝 𝑤 𝑝(𝑖)

country state healthcare … employment the Total

Republican 321 176 15 … 54 500 10233

Democratic 100 31 53 … 20 543 12231

Total 421 207 68 … 74 1043 22464

𝑃𝑀𝐼 𝑅𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛, 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡

= 𝑙𝑜𝑔 𝑝 𝑤 𝑖)𝑝(𝑖)
𝑝 𝑤 𝑝(𝑖)

 = 𝑙𝑜𝑔 𝑝 𝑤 𝑖)
𝑝 𝑤

 

= 𝑙𝑜𝑔
( 54
22464)

74
22464 ( 10233

22464 )
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Alternate Approach: Pointwise-mutual 
information

▪ Compute the co-occurrence between a word w and a label i

𝑃𝑀𝐼 𝑤, 𝑖 = 𝑙𝑜𝑔
𝑝(𝑤, 𝑖)

𝑝 𝑤 𝑝(𝑖)

Number of times w 
occurs in i-labeled 
documents / 
number of total 
words

Proportion of w Proportion of i-
labeled terms
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Alternate Approach: Pointwise-mutual 
information

▪ Common to use Positive Pointwise mutual information (PPMI)
o Set PMI to 0 wherever it is negative 

▪ Still run into problems with over-emphasizing rare words:
o There are some fixes for this, including smoothing

▪ PMI scores are used frequently
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Example of PMI: Gender Bias on 
Wikipedia

▪ [Only include words that occur in at least 1% of biographies]
▪ Women: actress (15.9%), women’s (8.8%), female (5.6%), her husband (4.1%), 

women (5.3%), first woman (1.9%), film actress (1.6%), her mother (1.8%), 
woman (4.4%), nee (3.6%), feminist (1%), miss (1.9%), model (3.3%), girls 
(1.5%) and singer (6.5%).

▪ Men: played (14.2%), footballer who (3.0%), football (4.5%), league (5.9%), john 
(7.9%), major league (1.8%), football league (1.6%), college football (1.5%), son 
(7%), football player (2.2%), footballer (2%), served (11.7%), william (4.6%), 
national football (2%) and professional footballer (1%).

Eduardo Graells-Garrido, Mounia Lalmas, and Filippo Menczer. 2015. First women, second sex: Gender bias in Wikipedia. In Proc. of Hypertext & Social 
Media. ACM, New York, 165–174.
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Additional Applications

▪ PPMI and variants of odds ratio are commonly used as features in other NLP tasks 
(not just for word statistics on their own)

o Represent a document using one of these metrics instead of using word counts

o Document vectors can be used for similarity metrics, e.g. clustering or 
information retrieval

country state healthcare … employment the

Republican 321 176 15 … 54 500

Democratic 100 31 53 … 20 543
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Today’s takeaways

▪ Counting words can be surprisingly hard!
▪ Key ideas behind two popular methods for examining word statistics:

o Log-odds with a Dirichlet prior (“Fightin’ Words”)
o Pointwise mutual information scores

▪ Examples of applications and understanding of when these methods are useful



43

Some takeaways from the course goals 
from

▪ Range of places people are interested in applying concepts from this course: public 
health, economics, cognitive science, environmental science

▪ Mix of background in NLP
▪ Topics of interest: misinformation, bias/inequality, validation, LLMs
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Reminders

▪ Course website: http://nlp-css-601-672.cs.jhu.edu/sp2026/
▪ Join class Piazza
▪ Fill out course goals survey (linked on slides from last class)

http://nlp-css-601-672.cs.jhu.edu/sp2026/
http://nlp-css-601-672.cs.jhu.edu/sp2026/
http://nlp-css-601-672.cs.jhu.edu/sp2026/
http://nlp-css-601-672.cs.jhu.edu/sp2026/
http://nlp-css-601-672.cs.jhu.edu/sp2026/
http://nlp-css-601-672.cs.jhu.edu/sp2026/
http://nlp-css-601-672.cs.jhu.edu/sp2026/
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▪ Jurafsky and Martin, 2022, Sec 6.6
o https://web.stanford.edu/~jurafsky/slp3/ed3book_jan122022.pdf

▪ Monroe BL, Colaresi MP, Quinn KM. Fightin' Words: Lexical Feature Selection 
and Evaluation for Identifying the Content of Political Conflict. Political Analysis. 
2008;16(4):372-403. doi:10.1093/pan/mpn018
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End
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