

Topic Modeling (LDA) pt 2

2/2/26

Recap

- Last class:
 - Topic modeling (LDA)
 - Model formulation
 - Gibbs sampling
 - Practical considerations
- Today
 - Topic model (LDA)
 - Variational Inference
 - Limitations and extensions
 - Example application: Structured topic model and media manipulation

LDA Generative Story

- For each topic k :
 - Draw $\beta_k \sim \text{Dir}(\eta)$
- For each document d :
 - Draw $\theta_d \sim \text{Dir}(\alpha)$
 - For each word in d :
 - Draw topic assignment $z \sim \text{Multinomial}(\theta_d)$
 - Draw $w \sim \text{Multinomial}(\beta_z)$

We use the data to estimate these two sets of parameters:

- β , a distribution over vocabulary (1 for each topic)
- θ , a distribution over topics (1 for each document)

Definitions

	Topic 1	Topic 2	...	Topic 30
administration	0.01	0.12	...	0.02
advertising	0.02	0.001	...	0.25
debt	0.1	0.001	...	0.01
...
government	0.01	0.15	...	0.01
...
spending	0.12	0.01	...	0.03
taxes	0.15	0.02	...	0.35
trillion	0.19	0.003	...	0.02

Each “topic” is defined by β , a multinomial distribution over the entire vocabulary

	Doc 1	Doc 2	...	Doc N
Topic 1	0.10	0.60	...	
Topic 3	0.02	0.05	...	
Topic 4	0.30	0.1	...	
...
Topic 15	0.20	0.01	...	0.40
...
Topic 28	0.01	0.03	...	0.20
Topic 29	0.25	0.15	...	
Topic 30	0.03	0.01	...	

Each document has associated θ , a multinomial distribution over topics

Review: Bayesian Inference

- Goal: estimate θ, β
- Bayesian approach: we estimate full posterior distribution

$$p(\theta, \beta, z | w) = \frac{p(w | \theta, \beta, z)p(\theta, \beta, z)}{p(w)}$$

$p(w)$ is intractable!

Gibbs Sampling:

- We generate samples from the posterior distribution
- We estimate θ, β from those samples

Alternative approach: Variational Inference

Variational Inference

Variational Inference: Key ideas

$$p(\theta, \beta, z | w)$$

A hierarchical diagram showing variables z and x at the top, with a bracket below them pointing to the parameters θ, β, z . A bracket on the right side of the parameters points to the variable w .

- We create a distribution q that approximates p but is easier to work with
 - Pick a family of distributions (Q) over the latent variables with its own *variational parameters*
 - Find the setting of the parameters that makes q close to the posterior of interest
 - Use q with the fitted parameters as a proxy for the posterior

Variational Inference: Compared to Gibbs sampling

- Pros:
 - Deterministic, easy to determine convergence, requires fewer iterations (faster, especially for large data)
 - Doesn't require conjugacy
- Cons:
 - Overall relative accuracy is not known, but Gibbs sampling potentially works better
 - Has guarantees of producing (asymptotically) exact samples from the target density (Robert and Casella, 2004)
 - Anecdotally people have observed Gibbs sampling yields better topics¹
 - Math is more difficult, Gibbs sampling is often easier to debug

Variational Inference

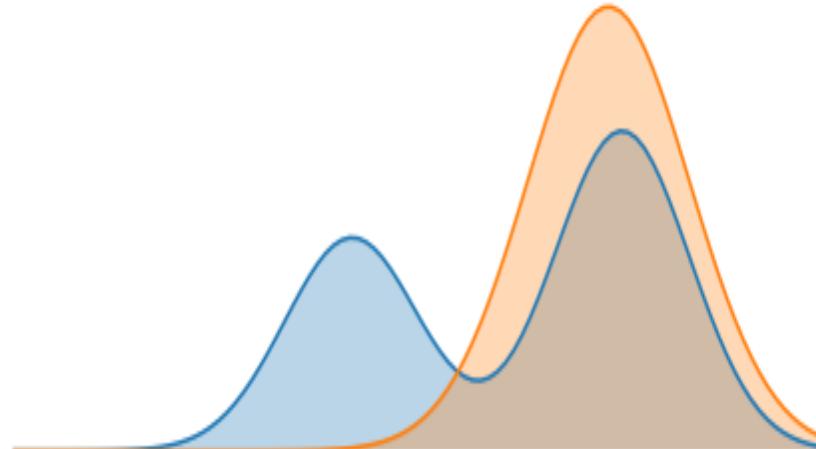
- We want to approximate $p(z|x)$
- Define variational distribution $q(z|\nu)$
 - Find ν so that $q(z|\nu)$ is close to $p(z|x)$
- How do we define “close to”?

Kullback–Leibler (KL) divergence

- $KL (q(z) || p(z|x)) = E_q [\log \frac{q(z)}{p(z|x)}]$

- Characterization

- q and p are high
- q is high and p is low
- q is low



$p = \text{blue}$

$q = \text{orange}$

Kullback–Leibler (KL) divergence

- How do we minimize $KL (q(z)||p(z|x) = E_q[\log \frac{q(z)}{p(z|x)}]$?

$$\begin{aligned}
KL(q(z)||p(z|x)) &= E_q[\log(q(z)) - \log(p(z|x))] \\
&= E_q[\log(q(z))] - E_q[\log(\frac{p(z,x)}{p(x)})] \\
&= E_q[\log(q(z))] - E_q[\log(p(x,z))] + \log(p(x)) \\
&= -(E_q[\log(p(x,z))] - E_q[\log(q(z))]) + \log(p(x))
\end{aligned}$$

Maximizing this minimizes
KL divergence

This is the value
we can't estimate

The evidence lower bound (ELBO)

- $$\begin{aligned} \log(p(x)) &= \log \int_z p(x, z) \\ &= \log \int_z p(x, z) \frac{q(z)}{q(z)} \\ &= \log(E_q[\frac{p(x, z)}{q(z)}]) \\ &\geq (E_q[\log \frac{p(x, z)}{q(z)}]) \\ &\geq E_q[\log(p(x, z))] - E_q[\log(q(z))] \end{aligned}$$

"ELBO"

Recap

- We want to approximate $p(z|x)$
- Define variational distribution $q(z|\nu)$
 - Find ν so that $q(z|\nu)$ is close to $p(z|x)$
 - i.e. so that $KL(q(z|\nu)||p(z|x))$ is low
 - i.e. so that $E_q[\log(p(x,z))] - E_q[\log(q(z))]$ is high

Mean Field Variational Inference

- We assume that the variational distribution factorizes

$$q(z_1, \dots, z_m) = \prod_{j=1}^m q(z_j)$$

- Finally, getting back to LDA, we can define separate a q for θ, β, z
- [Latent variables actually probably are dependent, so this won't contain the true posterior]

$$p(\theta, \beta, z | w) = \frac{p(w | \theta, \beta, z)p(\theta, \beta, z)}{p(w)}$$

Choose q

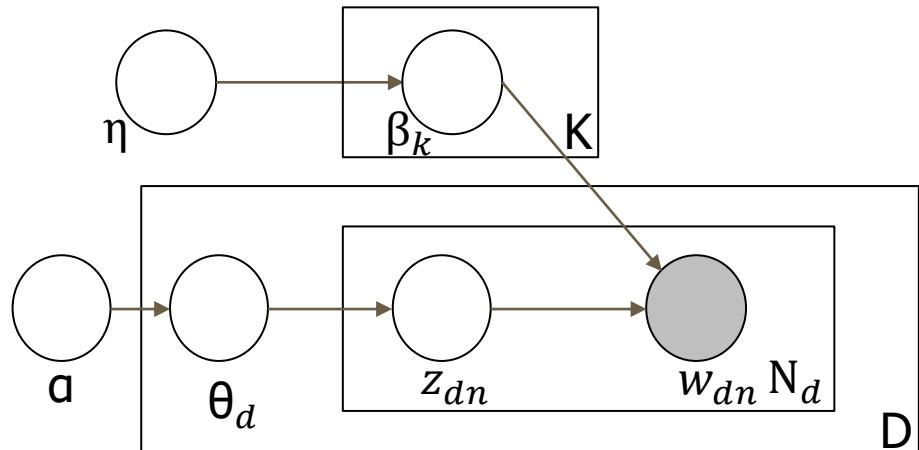
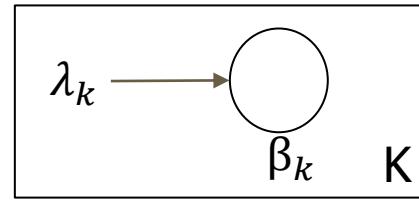
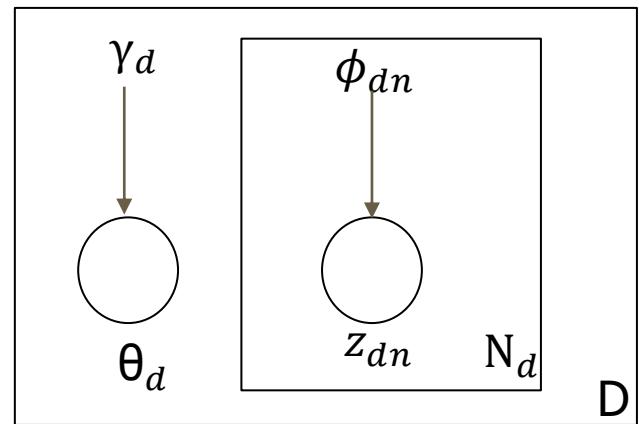
- Choose:

$$q(\theta, \beta, z) = \prod_{i=1}^K q(\beta_i | \lambda_i) \prod_{d=1}^D q_d(\theta_d, z_d | \gamma_d, \phi_d)$$

where $q_d(\theta, z) = q(\theta | \gamma) \prod_n^N q(z_n | \phi_n)$

- Assume that:
 - $q(\beta | \lambda)$ is a Dirichlet distribution with variational parameters λ
 - $q(\theta | \gamma)$ is a Dirichlet distribution with variational parameters γ
 - $q(z_n | \phi_n)$ is a multinomial (categorial) distribution with variational parameters ϕ_n

Choose q



Optimize q

- Common approach: use *coordinate ascent* to optimize
 - Update the variational parameters one at a time
 - At each update, we chose the value of the parameter that maximizes the ELBO (holding other variational parameters constant)
- With our choice of q , we can compute closed-form updates by taking derivatives of the ELBO and setting them to 0

This is like Gibbs sampling!

$$\phi \propto \eta_{w_n} \exp\{E_q[\log(\theta_i)|\gamma]\}$$

$q(z_n|\phi_n)$ Topic assignments for each word

$$\gamma_{di} = \alpha_i + \sum_{n=1}^N \phi_{dni}$$

$q(\theta|\gamma)$ topic vector for each document

$$\lambda_{iv} = \eta + \sum_{d=1}^D \sum_{n=1}^{N_d} \phi_{dni}, \text{ where } w_{dn} = v$$

$q(\beta|\lambda)$, distributions over vocabulary

Full procedure

- Choose q
- For each iteration
 - For each variational parameter
 - Update the parameter to maximize the ELBO
- End at convergence

[Use q to approximate posterior: we can take expectations of q to estimate parameters]

Popular LDA packages

- gensim
 - Python: <https://radimrehurek.com/gensim/index.html>
 - Variational inference
- Mallet
 - Java: <https://mimno.github.io/Mallet/topics.html>
 - Python wrapper: <https://github.com/maria-antoniak/little-mallet-wrapper>
 - Gibbs Sampling

JOHNS HOPKINS
WHITING SCHOOL
of ENGINEERING

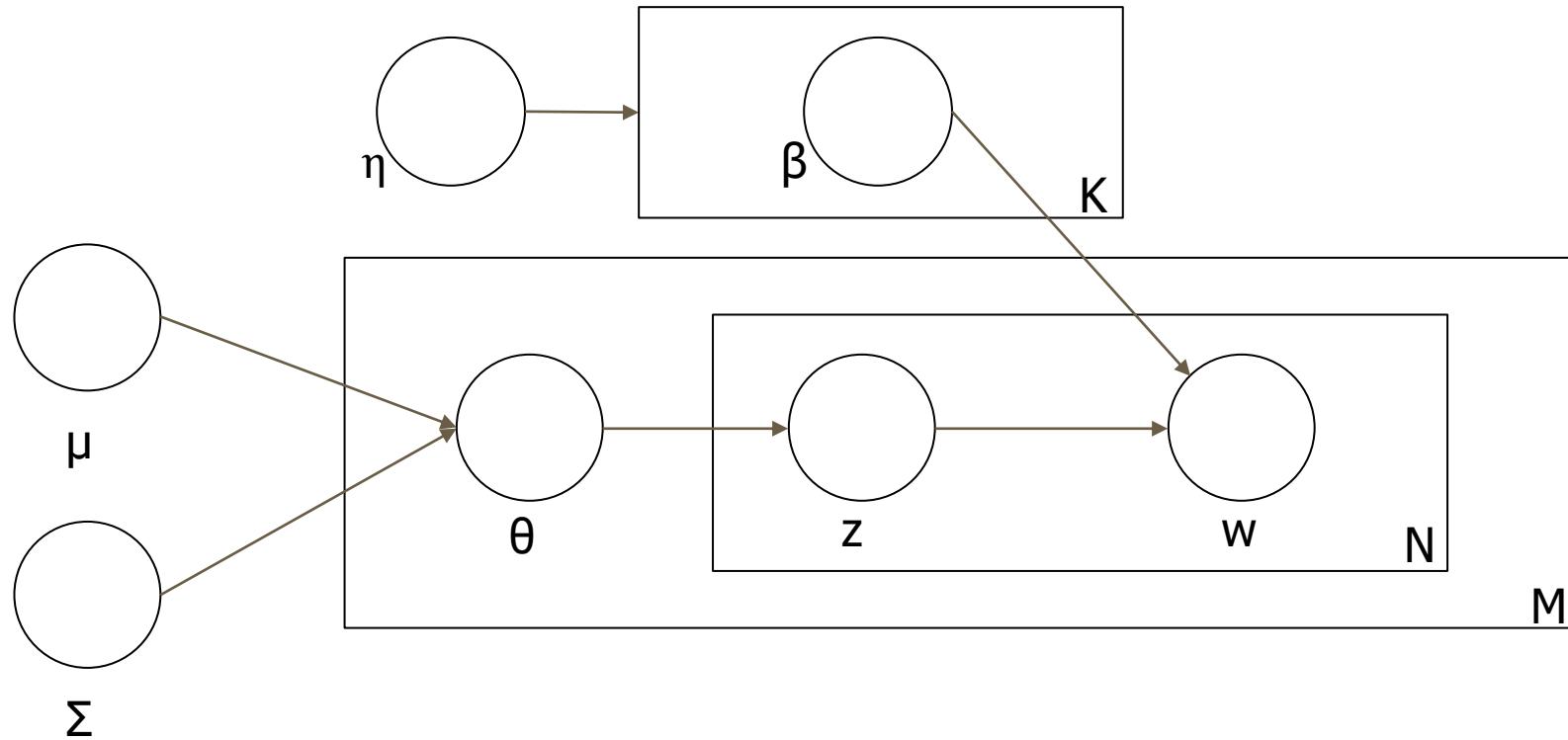
LDA Extensions

Problem 1: Topic Correlations

- LDA
 - In a vector drawn from a Dirichlet distribution (θ), elements are nearly independent
- Reality
 - A document about biology is more likely to also be about chemistry than skateboarding

LDA Generative Story

- For each topic k :
 - Draw $\beta_k \sim \text{Dir}(\eta)$
- For each document d :
 - Draw $\theta_d \sim \text{Dir}(\alpha)$ Draw $g_D \sim N(\mu, \Sigma)$; $\theta_D = f(g_D)$ $\Sigma = \text{Topic covariance matrix}$
 - For each word in d :
 - Draw topic assignment $z \sim \text{Multinomial}(\theta_d)$
 - Draw $w \sim \text{Multinomial}(\beta_z)$
- β , a distribution over vocabulary (1 for each topic)
- θ , a distribution over topics (1 for each document)



Example application: Structured topic model and media manipulation

Motivating application: Communications theory of media manipulation

- Communications scholarship on media influence:
- “the media may not be successful much of the time in telling people what to think, but is stunningly successful in telling its readers what to think about” [Cohen, 1963]
- Given a corpus of newspaper articles, we can determine how it may be influencing public opinion by analyzing changes in topic coverage
 - We don’t know exactly what topics are in advance: we need to be able to discover them from the corpus

Motivating application: Communications theory of media manipulation

- Agenda setting
 - **What** topics are covered
- Framing
 - **How** topics are covered
- Priming
 - What effect reporting has on public opinion
 - “Framing works to shape and alter audience members’ interpretations and preferences through priming”

Entman’s thesis: we can use this framework to understand bias in the media

“agenda setting, framing and priming fit together as *tools of power*”

Motivating application: Communications theory of media manipulation

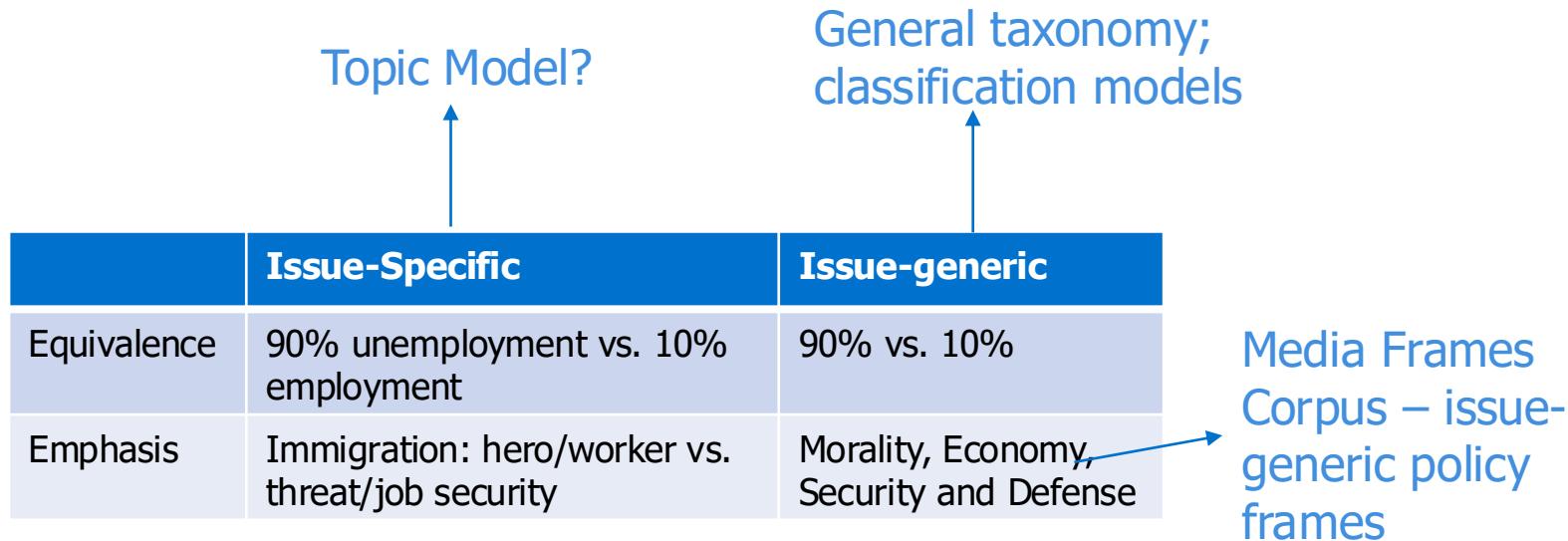
- Further refine framing definition: “process of culling a few elements of perceived reality and assembling a narrative that highlights connections among them to promote a particular interpretation” [Entman, 2007]
- Topic Level
 - Abortion is a moral issue
 - Abortion is health issue
 - [This should remind you agenda setting]
- Word Level
 - “Estate tax” vs. “Death tax”

Framing: Additional Background

- Equivalence: different presentations of logically-identical information (Scheufele and Iyengar, 2012)
- *Emphasis*: “qualitatively different yet potentially relevant considerations” (Chong and Druckman, 2007, p.114)

	Issue-Specific	Issue-generic
Equivalence		
Emphasis		

Framing: Additional Background



Mendelsohn, Julia, Ceren Budak, and David Jurgens. "Modeling Framing in Immigration Discourse on Social Media." NAACL. 2021.

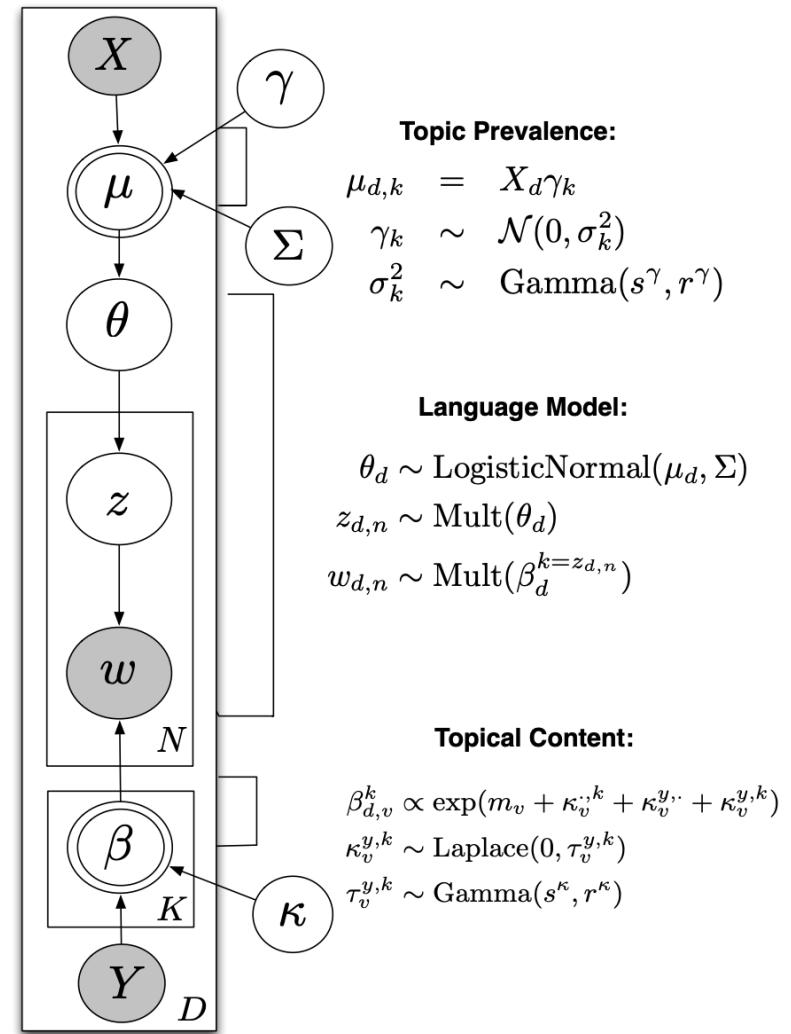
Card, Dallas, et al. "The media frames corpus: Annotations of frames across issues." ACL. 2015.

Problem: LDA assumptions conflict with analysis goals

- LDA
 - The topic distributions (θ) are drawn from the same distribution $\text{Dir}(a)$ for all documents
- Reality
 - We often use LDA to look at how topics vary across documents
 - Example
 - We run LDA on a corpus of Democratic/Republican speeches.
 - Look at topic prevalence in Republican speeches and Democratic speeches
 - Conclude Republicans talk about taxes more than Democrats
 - But we've assumed that all speeches are drawing topics the same way
 - We need more LDA extensions

Solution: Structured Topic Model

- Topical prevalence: the proportion of document devoted to a given topic
 - X - matrix of covariate information
 - Useful for *agenda setting*
- Topical content: the rate of word use within a given topic
 - Y - matrix of covariate information
 - Useful for *framing*

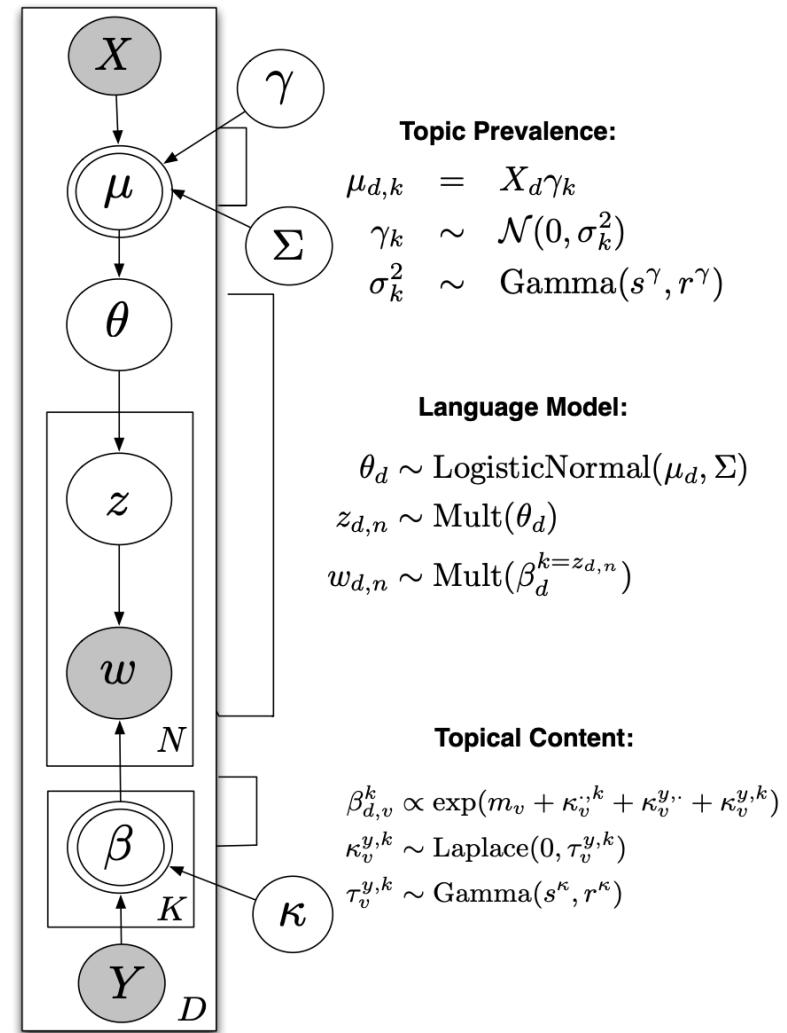


Roberts, Margaret E., et al. "The structural topic model and applied social science." *Advances in neural information processing systems workshop on topic models: computation, application, and evaluation*. Vol. 4. No. 1. 2013.

Solution: Structured Topic Model

- X could be Democrat/Republican as well as date of speech
 - Captures that Republicans talk more about *taxes* but rate varies by year
- Y could be Democrat/Republican
 - Captures that Democrats focus on social benefits and Republicans focus on government imposition

Roberts, Margaret E., et al. "The structural topic model and applied social science." *Advances in neural information processing systems workshop on topic models: computation, application, and evaluation*. Vol. 4. No. 1. 2013.



STM Example

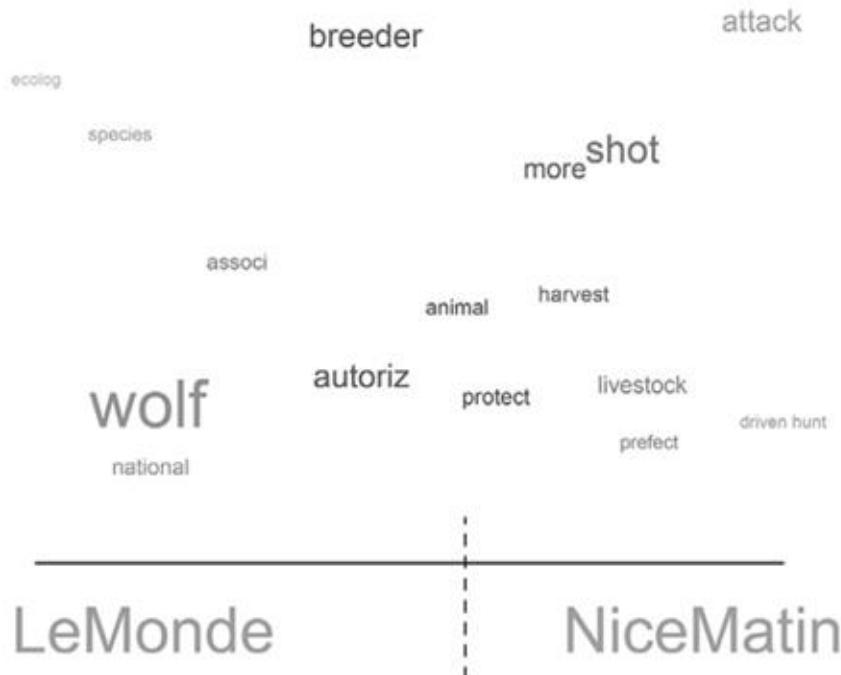
topic 6

21-year corpus on media coverage of
grey wolf recovery in France

Nice-Matin = local newspaper

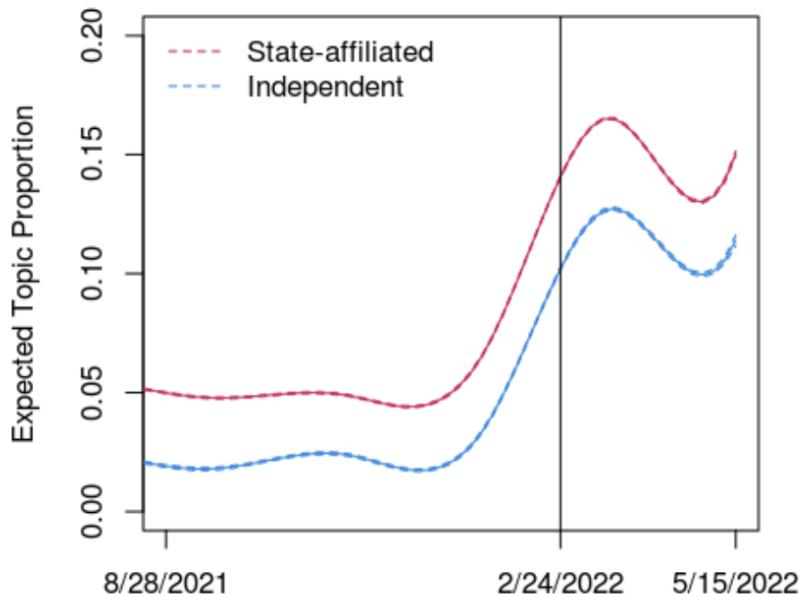
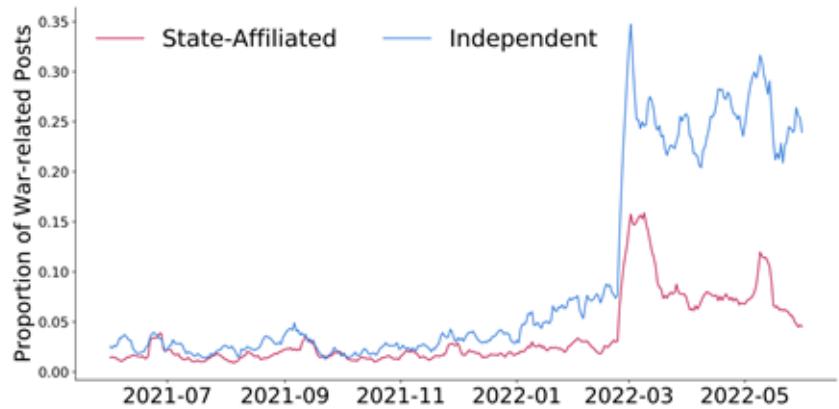
Le Monde = national newspaper

Topic 6: "Lethal Regulation"



<https://www.structuraltopicmodel.com/>
[Chandelier et al. 2018]

STM topic with the highest probability of Ukraine and military related



stm: R Package for Structural Topic Models

Margaret E. Roberts Brandon M. Stewart Dustin Tingley

UCSD

Princeton

Harvard

- Extremely popular go-to tool for computational social science (Cited 1000+ times)
- Flexible inclusion of covariates
- Tools for visualizing topic outputs
 - E.g. expected proportions, selecting example documents for each topic, representing topics with top words
- [Implemented in R package]

Today's takeaways

- Key ideas behind variational inference
- Agenda setting and framing
- STM: example of adoption NLP method for social-oriented analysis

Next class:

- Word Embeddings

Logistics: HW1 has been released!

References

1. Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." *Journal of machine Learning research* 3.Jan (2003): 993-1022.
2. Roberts, Margaret E., et al. "The structural topic model and applied social science." *Advances in neural information processing systems workshop on topic models: computation, application, and evaluation*. Vol. 4. No. 1. 2013.

More links:

- <https://www.youtube.com/watch?v=smfWKhDcaoA>