Vastly available digitized text data has created new opportunities for understanding social phenomena. Relatedly, social issues like toxicity, discrimination, and propaganda frequently manifest in text, making text analyses critical for understanding and mitigating them. In this course, we will centrally explore: how can we use NLP as a tool for understanding society? Students will learn core and recent advances in text-analysis methodology, building from word-level metrics to embeddings and language models as well as incorporating statistical methods such as time series analyses and causal inference.

Prerequisites: Pre-reqs: one of (EN.601.465/665, EN.601.467/667, EN.601.468/668) and familiarity with Python/PyTorch. Students may receive credit for EN.601.472 or EN.601.672, but not both.



Schedule

The current class schedule is below. The schedule is subject to change:

Date Topic Reference Readings Work Due
Wed Jan 22 Introduction, course expectations

Policies

Late Days Each student can use 5 late days for HW assignments over the course of the semester. Late days can be distributed in any way accross assignments. Additional extensions will not be granted, and work turned in late after all late days have been used will receive 0 credit. If a group assignment is turned in late, it will count as a late day for all students in the group. Late days cannot be used for the final project report.

Course Conduct This course includes topics that could raise differing opinions. All students are expected to respect everyone's perspective and input and to contribute towards creating a welcoming and inclusive climate. We the instructors will strive to make this classroom an inclusive space for all students, and we welcome feedback on ways to improve.

Academic Integrity This course will have a zero-tolerance philosophy regarding plagiarism or other forms of cheating, and incidents of academic dishonesty will be reported. A student who has doubts about how the Honor Code applies to this course should obtain specific guidance from the course instructor before submitting the respective assignment.

Discrimination and Harrasment The Johns Hopkins University is committed to equal opportunity for its faculty, staff, and students. To that end, the university does not discriminate on the basis of sex, gender, marital status, pregnancy, race, color, ethnicity, national origin, age, disability, religion, sexual orientation, gender identity or expression, veteran status, military status, immigration status or other legally protected characteristic. The University's Discrimination and Harassment Policy and Procedures provides information on how to report or file a complaint of discrimination or harassment based on any of the protected statuses listed in the earlier sentence, and the University’s prompt and equitable response to such complaints.

Personal Well-being Take care of yourself! Being a student can be challenging and your physical and mental health is important. If you need support, please seek it out. Here are several of the many helpful resources on campus:

Acknowledgements Thank you Daniel Khashabi for sharing the course website template!